Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France.
Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, UMR0203, Villeurbanne, France.
PLoS Biol. 2020 Mar 20;18(3):e3000681. doi: 10.1371/journal.pbio.3000681. eCollection 2020 Mar.
The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host's diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization.
营养与定植于胃肠道的微生物群落(即肠道微生物群)之间的相互作用决定了幼体的生长轨迹。营养缺乏会引发发育迟缓,而不成熟的肠道微生物群是与儿童营养不良相关的病理学的标志。然而,宿主相关细菌如何调节营养对幼体生长的影响仍然难以捉摸。在这里,我们使用与 Acetobacter pomorum WJL(ApWJL)和 Lactobacillus plantarum NC8(LpNC8)独立相关的无菌果蝇幼虫,这两种模型果蝇相关细菌,在 40 种不同且精确控制的营养环境中进行了大规模的系统营养筛选,以研究幼虫生长。我们将这些结果与基于基因组的代谢网络重建相结合,以定义无菌(GF)幼虫及其 2 种细菌伙伴的生物合成能力。我们首先确定 ApWJL 和 LpNC8 以不同的方式满足 ex-GF 幼虫的营养需求,并将这种差异细分为个别氨基酸、维生素、其他微量营养素和痕量金属。我们发现,与细菌相关的果蝇不仅用必需营养素来强化宿主的饮食,而且在特定情况下,通过向宿主提供代谢中间产物或营养衍生物,或者通过摄取、浓缩和输送痕量微量元素的污染物,来在功能上补偿宿主的营养缺陷。我们的系统工作表明,除了宿主与其细菌伙伴之间进行的分子对话之外,果蝇及其相关细菌还建立了一个依赖于营养供应和利用的综合营养网络。