Bumberger Andreas E, Ražnjević Sergej, Zhang Zaoli, Friedbacher Gernot, Fleig Juergen
Institute of Chemical Technologies and Analytics, TU Wien Vienna Austria
Erich Schmid Institute for Materials Science Leoben Austria.
J Mater Chem A Mater. 2023 Oct 16;11(44):24072-24088. doi: 10.1039/d3ta05086f. eCollection 2023 Nov 14.
The level of oxygen deficiency in high-voltage spinels of the composition LiNiMnO (LNMO) significantly influences the thermodynamic and kinetic properties of the material, ultimately affecting the cell performance of the corresponding lithium-ion batteries. This study presents a comprehensive defect chemical analysis of LNMO thin films with oxygen vacancy concentrations of 2.4% and 0.53%, focusing particularly on the oxygen vacancy regime around 4 V Li/Li. A set of electrochemical properties is extracted from impedance measurements as a function of state-of-charge for the full tetrahedral-site regime (3.8 to 4.9 V Li/Li). A defect chemical model (Brouwer diagram) is derived from the data, providing a coherent explanation for all important trends of the electrochemical properties and charge curve. Highly resolved chemical capacitance measurements allow a refining of the defect model for the oxygen vacancy regime, showing that a high level of oxygen deficiency not only impacts the amount of redox active Mn, but also promotes the trapping of electrons in proximity to an oxygen vacancy. The resulting stabilisation of Mn thereby mitigates the voltage reduction in the oxygen vacancy regime. These findings offer valuable insights into the complex influence of oxygen deficiency on the performance of lithium-ion batteries based on LNMO.
组成LiNiMnO(LNMO)的高压尖晶石中的缺氧水平显著影响材料的热力学和动力学性质,最终影响相应锂离子电池的电池性能。本研究对氧空位浓度分别为2.4%和0.53%的LNMO薄膜进行了全面的缺陷化学分析,特别关注Li/Li约4V时的氧空位状态。从阻抗测量中提取了一组电化学性质,作为全四面体位置状态(3.8至4.9V Li/Li)下充电状态的函数。根据数据推导了一个缺陷化学模型(布劳威尔图),为电化学性质和充电曲线的所有重要趋势提供了连贯的解释。高分辨率化学电容测量使氧空位状态的缺陷模型得以完善,表明高缺氧水平不仅影响氧化还原活性锰的含量,还促进氧空位附近电子的捕获。由此导致的锰的稳定化减轻了氧空位状态下的电压降低。这些发现为缺氧对基于LNMO的锂离子电池性能的复杂影响提供了有价值的见解。