Suppr超能文献

相似文献

1
Composition-structure relationships in the Li-ion battery electrode material LiNi(0.5)Mn(1.5)O(4).
Chem Mater. 2012 Aug 14;24(15):2952-2964. doi: 10.1021/cm301148d. Epub 2012 Jul 19.
4
Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
Phys Chem Chem Phys. 2012 Oct 21;14(39):13515-21. doi: 10.1039/c2cp43007j.
5
LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
ACS Appl Mater Interfaces. 2011 Aug;3(8):2966-72. doi: 10.1021/am200421h. Epub 2011 Jul 13.
8
Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
J Am Chem Soc. 2011 Mar 30;133(12):4404-19. doi: 10.1021/ja108588y. Epub 2011 Mar 4.
9
Synthesis and Redox Mechanism of Cation-Disordered, Rock-Salt Cathode-Material Li-Ni-Ti-Nb-O Compounds for a Li-Ion Battery.
ACS Appl Mater Interfaces. 2019 Oct 2;11(39):35777-35787. doi: 10.1021/acsami.9b12822. Epub 2019 Sep 17.

引用本文的文献

1
Transition Metal Dissolution Mechanisms and Impacts on Electronic Conductivity in Composite LiNiMnO Cathode Films.
ACS Mater Au. 2022 Nov 10;3(2):88-101. doi: 10.1021/acsmaterialsau.2c00060. eCollection 2023 Mar 8.
2
Chemical capacitance measurements reveal the impact of oxygen vacancies on the charge curve of LiNiMnO thin films.
J Mater Chem A Mater. 2023 Oct 16;11(44):24072-24088. doi: 10.1039/d3ta05086f. eCollection 2023 Nov 14.
3
Influence of Transition-Metal Order on the Reaction Mechanism of LNMO Cathode Spinel: An X-ray Absorption Spectroscopy Study.
Chem Mater. 2022 Jul 26;34(14):6529-6540. doi: 10.1021/acs.chemmater.2c01360. Epub 2022 Jul 6.
4
Limitations of Ultrathin AlO Coatings on LNMO Cathodes.
ACS Omega. 2021 Nov 3;6(45):30644-30655. doi: 10.1021/acsomega.1c04457. eCollection 2021 Nov 16.
5
Defect-Engineered β-MnO Precursors Control the Structure-Property Relationships in High-Voltage Spinel LiMnNiO.
ACS Omega. 2021 Sep 22;6(39):25562-25573. doi: 10.1021/acsomega.1c03656. eCollection 2021 Oct 5.
6
Research Progress in Improving the Cycling Stability of High-Voltage LiNiMnO Cathode in Lithium-Ion Battery.
Nanomicro Lett. 2017;9(2):22. doi: 10.1007/s40820-016-0123-3. Epub 2017 Jan 4.
7
Ab Initio Study of Sodium Insertion in the λ-MnO and Dis/Ordered λ-MnNiO Spinels.
Chem Mater. 2018 Oct 9;30(19):6646-6659. doi: 10.1021/acs.chemmater.8b01634. Epub 2018 Sep 13.
10
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions.
Sci Rep. 2015 Jan 26;5:8027. doi: 10.1038/srep08027.

本文引用的文献

1
High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder.
Adv Mater. 2012 Apr 24;24(16):2109-16. doi: 10.1002/adma.201104767. Epub 2012 Mar 19.
2
Electrochemical energy storage for green grid.
Chem Rev. 2011 May 11;111(5):3577-613. doi: 10.1021/cr100290v. Epub 2011 Mar 4.
3
A new, safe, high-rate and high-energy polymer lithium-ion battery.
Adv Mater. 2009 Dec 18;21(47):4807-10. doi: 10.1002/adma.200900470.
4
Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries.
Dalton Trans. 2008 Oct 28(40):5471-5. doi: 10.1039/b806662k. Epub 2008 Aug 15.
5
Nanomaterials for rechargeable lithium batteries.
Angew Chem Int Ed Engl. 2008;47(16):2930-46. doi: 10.1002/anie.200702505.
6
Building better batteries.
Nature. 2008 Feb 7;451(7179):652-7. doi: 10.1038/451652a.
7
Nanostructured materials for advanced energy conversion and storage devices.
Nat Mater. 2005 May;4(5):366-77. doi: 10.1038/nmat1368.
8
NMR studies of cathode materials for lithium-ion rechargeable batteries.
Chem Rev. 2004 Oct;104(10):4493-512. doi: 10.1021/cr020734p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验