Moroz Leonid L, Norekian Tigran P
Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA.
bioRxiv. 2024 Oct 28:2024.10.28.620631. doi: 10.1101/2024.10.28.620631.
Making living machines using biological materials (cells, tissues, and organs) is one of the challenges in developmental biology and modern biomedicine. Constraints in regeneration potential and immune self-defense mechanisms limit the progress in the field. Here, we present unanticipated features related to self-recognition and ancestral neuro-immune architectures of new emerging reference species - ctenophores or comb jellies. These are descendants of the earliest survival metazoan lineage with unique tissues, organs and independent origins of major animal traits such as neurons, muscles, mesoderm, and through-gut. Thus, ctenophores convergently evolved complex organization, compared to bilaterians. Nevertheless, their neural and immune systems are likely functionally coupled, enabling designs and experimental construction of hybrid neural systems and even entire animals. This report illustrates impressive opportunities to build both chimeric animals and neurobots using ctenophores as models for bioengineering. The obtained neurobots and chimeric animals from three ctenophore species ( and ) were able to be autonomous and survive for days. In sum, the unification of biodiversity, cell biology, and neuroscience opens unprecedented opportunities for experimental synthetic biology.
利用生物材料(细胞、组织和器官)制造活体机器是发育生物学和现代生物医学面临的挑战之一。再生潜力和免疫自我防御机制方面的限制阻碍了该领域的进展。在此,我们展示了与新出现的参考物种——栉水母或栉水母的自我识别和祖先神经免疫结构相关的意外特征。这些是最早存活的后生动物谱系的后代,具有独特的组织、器官以及主要动物特征(如神经元、肌肉、中胚层和贯穿肠道)的独立起源。因此,与两侧对称动物相比,栉水母趋同进化出了复杂的组织结构。然而,它们的神经系统和免疫系统可能在功能上相互耦合,这使得杂交神经系统甚至整个动物的设计和实验构建成为可能。本报告阐述了以栉水母为生物工程模型构建嵌合体动物和神经机器人的巨大机遇。从三种栉水母物种( 和 )获得的神经机器人和嵌合体动物能够自主行动并存活数天。总之,生物多样性、细胞生物学和神经科学的统一为实验合成生物学带来了前所未有的机遇。