Laboratory of Computational Genomics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
Nucleic Acids Res. 2024 Jan 11;52(1):114-124. doi: 10.1093/nar/gkad1140.
Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.
下一代短读长测序(NGS)技术最近已被广泛应用于各种临床环境中的基因检测。在临床环境中,NGS 数据的准确性至关重要,迄今为止已经发表了多项关于 NGS 数据质量控制的报告,主要集中在建立 NGS 序列读取准确性方面。尽管变异调用在单核苷酸水平上的重要性已得到证实,但它仍然是另一个 NGS 错误的重要来源,尚未得到探索。在这项研究中,我们使用基于机器学习的方法,使用基于真实世界 NGS 数据的 10 个基因组特征,在核苷酸残基分辨率上建立了外显子范围的难以测序区域的基准,这些数据是基于人类参考基因组序列(GRCh38/hg38)的基因组聚集数据库(gnomAD)积累的。新获得的指标,命名为“UNMET 得分”,以及来自人类基因组的额外结构信息,使我们能够使用常规的短读 NGS 评估感兴趣的外显子区域中的测序挑战。因此,UNMET 得分可以为解决临床测序中人类参考基因组序列 GRCh38/hg38 中蛋白质编码外显子的潜在序列错误提供依据。