Suppr超能文献

内部几何图案关系的神经计算

Neural computation of inner geometric pattern relations.

作者信息

Glünder H

出版信息

Biol Cybern. 1986;55(4):239-51. doi: 10.1007/BF00355599.

Abstract

A method for the description of patterns is proposed that is based on the evaluation of their inner geometric relations. They serve as features and are determined through operations that are mathematically formulated by so-called "generalized auto comparison functions", i.e., by measures that express a pattern's "auto-match" under geometric transformations. A subset of these features, namely the similarity features, are treated in greater detail, especially with regard to their invariance properties. The dominant role of spatial relations in the formation process of early visual representations is exemplified and a mechanism for the extraction of relational features from such representations is proposed. The feasibility for self-organization of suitable computing structures is discussed.

摘要

提出了一种基于模式内部几何关系评估的模式描述方法。这些关系作为特征,并通过由所谓的“广义自比较函数”进行数学公式化的运算来确定,即通过在几何变换下表达模式“自匹配”的度量来确定。对这些特征的一个子集,即相似性特征,进行了更详细的处理,特别是关于它们的不变性属性。举例说明了空间关系在早期视觉表征形成过程中的主导作用,并提出了一种从这些表征中提取关系特征的机制。讨论了自组织合适计算结构的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验