IEEE Trans Neural Syst Rehabil Eng. 2023;31:4760-4772. doi: 10.1109/TNSRE.2023.3337525. Epub 2023 Dec 7.
Traditional single-modality brain-computer interface (BCI) systems are limited by their reliance on a single characteristic of brain signals. To address this issue, incorporating multiple features from EEG signals can provide robust information to enhance BCI performance. In this study, we designed and implemented a novel hybrid paradigm that combined illusion-induced visual evoked potential (IVEP) and steady-state visual evoked potential (SSVEP) with the aim of leveraging their features simultaneously to improve system efficiency. The proposed paradigm was validated through two experimental studies, which encompassed feature analysis of IVEP with a static paradigm, and performance evaluation of hybrid paradigm in comparison with the conventional SSVEP paradigm. The characteristic analysis yielded significant differences in response waveforms among different motion illusions. The performance evaluation of the hybrid BCI demonstrates the advantage of integrating illusory stimuli into the SSVEP paradigm. This integration effectively enhanced the spatio-temporal features of EEG signals, resulting in higher classification accuracy and information transfer rate (ITR) within a short time window when compared to traditional SSVEP-BCI in four-command task. Furthermore, the questionnaire results of subjective estimation revealed that proposed hybrid BCI offers less eye fatigue, and potentially higher levels of concentration, physical condition, and mental condition for users. This work first introduced the IVEP signals in hybrid BCI system that could enhance performance efficiently, which is promising to fulfill the requirements for efficiency in practical BCI control systems.
传统的单模态脑机接口 (BCI) 系统受到其对脑信号单一特征的依赖限制。为了解决这个问题,结合 EEG 信号的多个特征可以提供稳健的信息来提高 BCI 的性能。在这项研究中,我们设计并实现了一种新的混合范式,将幻觉诱导的视觉诱发电位 (IVEP) 和稳态视觉诱发电位 (SSVEP) 相结合,旨在同时利用它们的特征来提高系统效率。该范式通过两项实验研究得到了验证,其中包括使用静态范式对 IVEP 的特征分析,以及与传统 SSVEP 范式相比对混合范式的性能评估。特征分析表明,在不同的运动幻觉中,响应波形存在显著差异。混合 BCI 的性能评估表明,将幻觉刺激整合到 SSVEP 范式中具有优势。这种集成有效地增强了 EEG 信号的时空特征,与传统的四指令任务中的 SSVEP-BCI 相比,在短时间窗口内实现了更高的分类准确性和信息传输率 (ITR)。此外,主观评估的问卷调查结果表明,所提出的混合 BCI 为用户提供了更低的眼疲劳度,并且可能具有更高的专注度、身体状况和精神状况。这项工作首次在混合 BCI 系统中引入了 IVEP 信号,这可以有效地提高性能,有望满足实际 BCI 控制系统中效率的要求。