Lanave C, Tommasi S, Preparata G, Saccone C
Biosystems. 1986;19(4):273-83. doi: 10.1016/0303-2647(86)90004-3.
We present a further application of the stochastic model previously described (Lanave et al., 1984, 1985) for measuring the nucleotide substitution rate in the mammalian evolution of the mitochondrial DNA (mtDNA). The applicability of this method depends on the validity of "stationarity conditions" (equal nucleotide frequencies at first, second and third silent codon positions in homologous protein coding genes). In the comparison of homologous sequences satisfying the stationarity condition at the silent sites, only the four codon families (quartets) for which both transitions and transversions are silent at the third position are considered here. This has allowed us to estimate the transition and transversion rates for any pair of species. We have analyzed the third silent codon position of the triplet rat-mouse-cow, of a series of slightly divergent primates and of two Drosophila species. In terms of two external dating input we have then determined the phylogenetic trees for rat, mouse, and cow as well as for a number of primates including man. The phylogenetic tree that we have derived for the triplet rat, mouse and cow agrees with that we had previously determined by analyzing the first, second and third silent codon positions (in both duets and quartets) of mt genes (Lanave et al., 1985). For primates our method leads to the following branching order from the oldest to the most recent: Gibbon, Orangutan, Gorilla, Chimpanzee and Man. In absolute time, fixing the distance Chimpanzee-Man as 5 million years (Myr) we estimate the dating of the divergence nodes as: Gorilla 7 Myr; Orangutan 16 Myr; Gibbon 20 Myr. In all cases analyzed, the transition rate has been found to be substantially higher than the transversion rate. Moreover we have found that the transition/transversion ratio is different in the various lineages. We suggest that this fact is probably related to the nucleotide frequencies at the third silent codon position.
我们展示了先前描述的随机模型(Lanave等人,1984年,1985年)在测量哺乳动物线粒体DNA(mtDNA)进化中核苷酸替换率方面的进一步应用。该方法的适用性取决于“平稳性条件”(同源蛋白质编码基因中第一、第二和第三沉默密码子位置的核苷酸频率相等)的有效性。在比较满足沉默位点平稳性条件的同源序列时,这里仅考虑在第三位置转换和颠换均为沉默的四个密码子家族(四重奏)。这使我们能够估计任何一对物种的转换和颠换率。我们分析了大鼠 - 小鼠 - 牛三联体、一系列亲缘关系稍远的灵长类动物以及两种果蝇物种的第三沉默密码子位置。根据两个外部时间输入,我们随后确定了大鼠、小鼠和牛以及包括人类在内的一些灵长类动物的系统发育树。我们得出的大鼠、小鼠和牛三联体的系统发育树与我们之前通过分析mt基因的第一、第二和第三沉默密码子位置(在二重奏和四重奏中)所确定的一致(Lanave等人,1985年)。对于灵长类动物,我们的方法得出从最古老到最新的分支顺序如下:长臂猿、猩猩、大猩猩、黑猩猩和人类。在绝对时间上,将黑猩猩 - 人类的距离设定为500万年(Myr),我们估计分歧节点的时间为:大猩猩700万年;猩猩1600万年;长臂猿2000万年。在所有分析的案例中,发现转换率显著高于颠换率。此外,我们发现不同谱系中的转换/颠换比不同。我们认为这一事实可能与第三沉默密码子位置的核苷酸频率有关。