Suppr超能文献

有机化工和塑料行业减少一氧化碳排放主要途径的综合评估。

Integrated Assessment of the Leading Paths to Mitigate CO Emissions from the Organic Chemical and Plastics Industry.

作者信息

Fritzeen Wade E, O'Rourke Patrick R, Fuhrman Jay G, Colosi Lisa M, Yu Sha, Shobe William M, Doney Scott C, McJeon Haewon C, Clarens Andrés F

机构信息

Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

School of Public Policy, University of Maryland, College Park, Maryland 20742, United States.

出版信息

Environ Sci Technol. 2023 Dec 12;57(49):20571-20582. doi: 10.1021/acs.est.3c05202. Epub 2023 Nov 28.

Abstract

The chemical industry is a major and growing source of CO emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.

摘要

化学工业是一氧化碳排放的一个主要且不断增长的来源。在此,我们扩展了主要基于美国的综合评估模型GCAM,以纳入蒸汽裂解(当今有机化学工业的主导工艺)的表述以及一系列新兴的脱碳策略,包括催化裂解、低碳工艺热和原料转换。我们发现,新兴的催化生产技术对本世纪中叶的排放减排影响较小。相比之下,工艺热的产生可实现显著减排,到2050年将相关的一氧化碳排放量减少约76%。工艺热的产生方式实现了多样化,包括碳捕获与封存(CCS)、氢能和电气化。敏感性分析表明,我们对未来一氧化碳净排放量的结果对全球部署的CCS量最为敏感。如果焚烧份额如预期那样增加且不将焚烧与CCS相结合,那么所定义的系统无法实现净零排放。在一氧化碳净零排放的未来,有机化学品的产量将低于无政策情景下的产量。原料排放的减排在很大程度上依赖于用作替代原料的生物碳以及塑料的废物处理。唯一能使有机化学部门实现净负一氧化碳排放(到2070年)的情景是,更多地使用生物原料并持续依赖废塑料填埋,而非回收或焚烧,这存在权衡取舍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验