Elvatun Severin, Knoors Daan, Nygård Mari, Uusküla Anneli, Võrk Andres, Nygård Jan F
Department of Registry Informatics, Cancer Registry of Norway, Ullernchausseen 64, 0379 Oslo, Norway.
Department of Registry Informatics, Cancer Registry of Norway, Norway.
Int J Med Inform. 2024 Jan;181:105297. doi: 10.1016/j.ijmedinf.2023.105297. Epub 2023 Nov 24.
Cervical cancer is a preventable disease, despite being one of the most common types of female cancers worldwide. Integrating existing programs for cervical cancer screening with personalized risk prediction algorithms can improve population-level cancer prevention by enabling more targeted screening and contrive preventive healthcare innovations. While algorithms developed for cervical cancer risk prediction have shown promising performance in internal validation on more homogeneous populations, their ability to generalize to external populations remains to be assessed.
To address this gap, we perform a cross-population comparative study of personalized prediction algorithms for more personalized cervical cancer screening. Using data from the Norwegian and Estonian populations, the algorithms are validated on internal and external datasets to study their potential biases and limitations when applied to different populations. We evaluate the algorithms in predicting progression from low-grade precancerous cervical lesions, simulating a clinically relevant application of more personalized risk stratification.
As expected, our numerical experiments show that algorithm performance varies depending on the population. However, some algorithms show strong generalization capacity across different data sources. Using Kaplan-Meier estimates, we demonstrate the strengths and limitations of the algorithms in detecting cancer progression over time by comparing to the trends observed from data. We assess their overall discrimination performance in personalized risk predictions by analyzing the accuracy and confidence in individual risk estimates.
This study examines the effectiveness of personalized prediction algorithms across different populations. Our results demonstrate the potential for generalizing risk prediction algorithms to external populations. These findings highlight the importance of considering population diversity when developing risk prediction algorithms.
宫颈癌是一种可预防的疾病,尽管它是全球最常见的女性癌症类型之一。将现有的宫颈癌筛查项目与个性化风险预测算法相结合,可以通过实现更有针对性的筛查和创新预防性医疗保健措施,来改善人群层面的癌症预防。虽然为宫颈癌风险预测开发的算法在更同质化人群的内部验证中显示出了良好的性能,但其推广到外部人群的能力仍有待评估。
为了填补这一空白,我们针对更个性化的宫颈癌筛查进行了个性化预测算法的跨人群比较研究。利用来自挪威和爱沙尼亚人群的数据,在内部和外部数据集上对算法进行验证,以研究其应用于不同人群时可能存在的偏差和局限性。我们评估算法在预测低度宫颈癌前病变进展方面的性能,模拟更个性化风险分层的临床相关应用。
正如预期的那样,我们的数值实验表明算法性能因人群而异。然而,一些算法在不同数据源之间显示出强大的泛化能力。使用 Kaplan-Meier 估计,通过与从数据中观察到的趋势进行比较,我们展示了算法在检测癌症随时间进展方面的优势和局限性。我们通过分析个体风险估计的准确性和可信度,评估它们在个性化风险预测中的整体区分性能。
本研究考察了个性化预测算法在不同人群中的有效性。我们的结果证明了将风险预测算法推广到外部人群的潜力。这些发现凸显了在开发风险预测算法时考虑人群多样性的重要性。