Suppr超能文献

二氧化锡的钒和钽掺杂:一项理论研究。

Vanadium and tantalum doping of tin dioxide: a theoretical study.

作者信息

Filippatos Petros-Panagis, Kelaidis Nikolaos, Vasilopoulou Maria, Chroneos Alexander

机构信息

Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15310, Athens, Greece.

Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry, CV1 5FB, UK.

出版信息

Sci Rep. 2023 Nov 28;13(1):20983. doi: 10.1038/s41598-023-47383-3.

Abstract

The increasing demand of efficient optoelectronic devices such as photovoltaics has created a great research interest in methods to manipulate the electronic and optical properties of all the layers of the device. Tin dioxide (SnO), due to his charge transport capability, high stability and easy fabrication is the main electron transport layer in modern photovoltaics which have achieved a record efficiency. While the wide band gap of SnO makes it an effective electron transport layer, its potential for other energy applications such as photocatalysis is limited. To further improve is conductivity and reduce its bandgap, doping or co-doping with various elements has been proposed. In the present density functional theory (DFT) study, we focus on the investigation of vanadium (V) and tantalum (Ta) doped SnO both in the bulk and the surface. Here we focus on interstitial and substitutional doping aiming to leverage these modifications to enhance the density of states for energy application. These changes also have the potential to influence the optical properties of the material, such as absorption, and make SnO more versatile for photovoltaic and photocatalytic applications. The calculations show the formation of gap states near the band edges which are beneficial for the electron transition and in the case of Ta doping the lowest bandgap value is achieved. Interestingly, in the case of Ta interstitial, deep trap states are formed which depending of the application could be advantageous. Regarding the optical properties, we found that V doping significantly increases the refractive index of SnO while the absorption is generally improved in all the cases. Lastly, we investigate the electronic properties of the (110) surface of SnO, and we discuss possible other applications due to surface doping. The present work highlights the importance of V and Ta doping for energy applications and sensor applications.

摘要

对光伏等高效光电器件需求的不断增加,引发了人们对操纵器件各层电子和光学性质方法的浓厚研究兴趣。二氧化锡(SnO)因其电荷传输能力、高稳定性和易于制备,成为现代光伏中实现创纪录效率的主要电子传输层。虽然SnO的宽带隙使其成为有效的电子传输层,但其在光催化等其他能源应用方面的潜力有限。为进一步提高其导电性并降低其带隙,人们提出了用各种元素进行掺杂或共掺杂。在当前的密度泛函理论(DFT)研究中,我们专注于研究钒(V)和钽(Ta)掺杂的SnO的体相和表面情况。这里我们专注于间隙掺杂和替代掺杂,旨在利用这些改性来提高能量应用的态密度。这些变化也有可能影响材料的光学性质,如吸收,并使SnO在光伏和光催化应用中更具通用性。计算结果表明,在带边附近形成了有利于电子跃迁的能隙态,并且在Ta掺杂的情况下实现了最低带隙值。有趣的是,在Ta间隙掺杂的情况下,形成了深陷阱态,这根据应用情况可能是有利的。关于光学性质,我们发现V掺杂显著提高了SnO的折射率,而在所有情况下吸收通常都有所改善。最后,我们研究了SnO(110)表面的电子性质,并讨论了表面掺杂可能带来的其他应用。本工作突出了V和Ta掺杂在能源应用和传感器应用中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bc3/10684489/aad11a862a0b/41598_2023_47383_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验