Suppr超能文献

氧化锡中的硫族元素掺杂:用于增强光催化应用的光学和电子性质的密度泛函理论研究

Chalcogen Doping in SnO: A DFT Investigation of Optical and Electronic Properties for Enhanced Photocatalytic Applications.

作者信息

Kelaidis Nikolaos, Panayiotatos Yerassimos, Chroneos Alexander

机构信息

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, 11635 Athens, Greece.

Department of Mechanical Engineering, University of West Attica, 12241 Athens, Greece.

出版信息

Materials (Basel). 2024 Aug 7;17(16):3910. doi: 10.3390/ma17163910.

Abstract

Tin dioxide (SnO) is an important transparent conductive oxide (TCO), highly desirable for its use in various technologies due to its earth abundance and non-toxicity. It is studied for applications such as photocatalysis, energy harvesting, energy storage, LEDs, and photovoltaics as an electron transport layer. Elemental doping has been an established method to tune its band gap, increase conductivity, passivate defects, etc. In this study, we apply density functional theory (DFT) calculations to examine the electronic and optical properties of SnO when doped with members of the oxygen family, namely S, Se, and Te. By calculating defect formation energies, we find that S doping is energetically favourable in the oxygen substitutional position, whereas Se and Te prefer the Sn substitutional site. We show that S and Se substitutional doping leads to near gap states and can be an effective way to reduce the band gap, which results in an increased absorbance in the optical part of the spectrum, leading to improved photocatalytic activity, whereas Te doping results in several mid-gap states.

摘要

二氧化锡(SnO)是一种重要的透明导电氧化物(TCO),因其在地壳中储量丰富且无毒,在各种技术中具有很高的应用价值。它作为电子传输层被研究用于光催化、能量收集、能量存储、发光二极管和光伏等应用。元素掺杂是一种已确立的调节其带隙、提高导电性、钝化缺陷等的方法。在本研究中,我们应用密度泛函理论(DFT)计算来研究当用氧族元素S、Se和Te掺杂时SnO的电子和光学性质。通过计算缺陷形成能,我们发现S掺杂在氧取代位置在能量上是有利的,而Se和Te更喜欢Sn取代位点。我们表明,S和Se取代掺杂会导致近带隙态,并且可以是减小带隙的有效方法,这导致光谱光学部分的吸光度增加,从而提高光催化活性,而Te掺杂会导致几个中间带隙态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验