Prieto-Castrillo F, Rodríguez-Rastrero M, Yunta F, Borondo F, Borondo J
Departamento de Matemáticas, Universidad de Oviedo, Calle García Lorca 18, 33007, Oviedo, Principado de Asturias, Spain.
Departamento de Medio Ambiente, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.
Sci Rep. 2023 Nov 27;13(1):20916. doi: 10.1038/s41598-023-44171-x.
The so-called soil-landscape model is the central paradigm which relates soil types to their forming factors through the visionary Jenny's equation. This is a formal mathematical expression that would permit to infer which soil should be found in a specific geographical location if the involved relationship was sufficiently known. Unfortunately, Jenny's is only a conceptual expression, where the intervening variables are of qualitative nature, not being then possible to work it out with standard mathematical tools. In this work, we take a first step to unlock this expression, showing how Machine Learning can be used to predictably relate soil types and environmental factors. Our method outperforms other conventional statistical analyses that can be carried out on the same forming factors defined by measurable environmental variables.
所谓的土壤-景观模型是核心范式,它通过富有远见的詹妮方程将土壤类型与其形成因素联系起来。这是一个形式化的数学表达式,如果其中涉及的关系足够明确,就可以据此推断在特定地理位置应该发现哪种土壤。不幸的是,詹妮方程只是一个概念性表达式,其中的中间变量具有定性性质,因此无法用标准数学工具进行求解。在这项工作中,我们朝着解开这个表达式迈出了第一步,展示了如何使用机器学习来可预测地关联土壤类型和环境因素。我们的方法优于其他可以对由可测量环境变量定义的相同形成因素进行的传统统计分析。