Suppr超能文献

通过机器学习解析珍妮的方程式。

Disentangling Jenny's equation by machine learning.

作者信息

Prieto-Castrillo F, Rodríguez-Rastrero M, Yunta F, Borondo F, Borondo J

机构信息

Departamento de Matemáticas, Universidad de Oviedo, Calle García Lorca 18, 33007, Oviedo, Principado de Asturias, Spain.

Departamento de Medio Ambiente, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.

出版信息

Sci Rep. 2023 Nov 27;13(1):20916. doi: 10.1038/s41598-023-44171-x.

Abstract

The so-called soil-landscape model is the central paradigm which relates soil types to their forming factors through the visionary Jenny's equation. This is a formal mathematical expression that would permit to infer which soil should be found in a specific geographical location if the involved relationship was sufficiently known. Unfortunately, Jenny's is only a conceptual expression, where the intervening variables are of qualitative nature, not being then possible to work it out with standard mathematical tools. In this work, we take a first step to unlock this expression, showing how Machine Learning can be used to predictably relate soil types and environmental factors. Our method outperforms other conventional statistical analyses that can be carried out on the same forming factors defined by measurable environmental variables.

摘要

所谓的土壤-景观模型是核心范式,它通过富有远见的詹妮方程将土壤类型与其形成因素联系起来。这是一个形式化的数学表达式,如果其中涉及的关系足够明确,就可以据此推断在特定地理位置应该发现哪种土壤。不幸的是,詹妮方程只是一个概念性表达式,其中的中间变量具有定性性质,因此无法用标准数学工具进行求解。在这项工作中,我们朝着解开这个表达式迈出了第一步,展示了如何使用机器学习来可预测地关联土壤类型和环境因素。我们的方法优于其他可以对由可测量环境变量定义的相同形成因素进行的传统统计分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdce/10684535/d91ee889fe36/41598_2023_44171_Fig1_HTML.jpg

相似文献

1
Disentangling Jenny's equation by machine learning.
Sci Rep. 2023 Nov 27;13(1):20916. doi: 10.1038/s41598-023-44171-x.
2
Mapping lead concentrations in urban topsoil using proximal and remote sensing data and hybrid statistical approaches.
Environ Pollut. 2021 Mar 1;272:116041. doi: 10.1016/j.envpol.2020.116041. Epub 2020 Nov 24.
3
Treating low-risk febrile neutropenia: Jenny's story.
Arch Dis Child. 2007 Jan;92(1):7-8. doi: 10.1136/adc.2006.095521.
4
Jenny's story: reinventing oneself through occupation and narrative configuration.
Am J Occup Ther. 1996 Apr;50(4):306-14. doi: 10.5014/ajot.50.4.306.
5
Relating information-needs to the cancer experience. 1. Jenny's story: a cancer narrative.
Eur J Cancer Care (Engl). 2000 Mar;9(1):41-7. doi: 10.1046/j.1365-2354.2000.00191.x.
6
Collagen and Eosinophils in Jenny's Endometrium: Do They Differ With Endometrial Classification?
Front Vet Sci. 2020 Sep 10;7:631. doi: 10.3389/fvets.2020.00631. eCollection 2020.
7
Jimmy's baby doll and Jenny's truck: young children's reasoning about gender norms.
Child Dev. 2012 Jan-Feb;83(1):146-58. doi: 10.1111/j.1467-8624.2011.01696.x. Epub 2011 Dec 16.
8
Traditional Chinese medicine: a case of dysmenorrhoea.
Aust J Holist Nurs. 2000 Apr;7(1):42-3.
9
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Linguistic significance of babbling: evidence from a tracheostomized infant.
J Child Lang. 1990 Feb;17(1):1-16. doi: 10.1017/s0305000900013076.

本文引用的文献

2
Soil natural capital in europe; a framework for state and change assessment.
Sci Rep. 2017 Jul 27;7(1):6706. doi: 10.1038/s41598-017-06819-3.
3
Higher-order interactions stabilize dynamics in competitive network models.
Nature. 2017 Aug 10;548(7666):210-213. doi: 10.1038/nature23273. Epub 2017 Jul 26.
4
Essentials of the self-organizing map.
Neural Netw. 2013 Jan;37:52-65. doi: 10.1016/j.neunet.2012.09.018. Epub 2012 Oct 4.
5
Permutation importance: a corrected feature importance measure.
Bioinformatics. 2010 May 15;26(10):1340-7. doi: 10.1093/bioinformatics/btq134. Epub 2010 Apr 12.
6
Disentangling the web of life.
Science. 2009 Jul 24;325(5939):416-9. doi: 10.1126/science.1170749.
7
Clustering of the self-organizing map.
IEEE Trans Neural Netw. 2000;11(3):586-600. doi: 10.1109/72.846731.
8
Estimating regression models with unknown break-points.
Stat Med. 2003 Oct 15;22(19):3055-71. doi: 10.1002/sim.1545.
9
Random graph models of social networks.
Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1(Suppl 1):2566-72. doi: 10.1073/pnas.012582999.
10
Collective dynamics of 'small-world' networks.
Nature. 1998 Jun 4;393(6684):440-2. doi: 10.1038/30918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验