Suppr超能文献

局部而非全局图论度量语义网络可在任务间泛化。

Local but not global graph theoretic measures of semantic networks generalize across tasks.

机构信息

Department of Psychology, University of California, San Diego, CA, USA.

出版信息

Behav Res Methods. 2024 Sep;56(6):5279-5308. doi: 10.3758/s13428-023-02271-6. Epub 2023 Nov 28.

Abstract

"Dogs" are connected to "cats" in our minds, and "backyard" to "outdoors." Does the structure of this semantic knowledge differ across people? Network-based approaches are a popular representational scheme for thinking about how relations between different concepts are organized. Recent research uses graph theoretic analyses to examine individual differences in semantic networks for simple concepts and how they relate to other higher-level cognitive processes, such as creativity. However, it remains ambiguous whether individual differences captured via network analyses reflect true differences in measures of the structure of semantic knowledge, or differences in how people strategically approach semantic relatedness tasks. To test this, we examine the reliability of local and global metrics of semantic networks for simple concepts across different semantic relatedness tasks. In four experiments, we find that both weighted and unweighted graph theoretic representations reliably capture individual differences in local measures of semantic networks (e.g., how related pot is to pan versus lion). In contrast, we find that metrics of global structural properties of semantic networks, such as the average clustering coefficient and shortest path length, are less robust across tasks and may not provide reliable individual difference measures of how people represent simple concepts. We discuss the implications of these results and offer recommendations for researchers who seek to apply graph theoretic analyses in the study of individual differences in semantic memory.

摘要

在我们的思维中,“狗”与“猫”相关联,“后院”与“户外”相关联。这种语义知识的结构是否因人而异?基于网络的方法是一种流行的表示方案,用于思考不同概念之间的关系是如何组织的。最近的研究使用图论分析来检查简单概念的语义网络中的个体差异,以及它们与其他高级认知过程(如创造力)的关系。然而,通过网络分析捕获的个体差异是否反映了语义知识结构的真实差异,或者反映了人们在进行语义相关性任务时的策略性差异,仍然存在不确定性。为了检验这一点,我们检验了不同语义相关性任务中简单概念的局部和全局语义网络度量的可靠性。在四个实验中,我们发现加权和非加权图论表示都可靠地捕捉了语义网络局部度量的个体差异(例如,锅与平底锅相对于狮子的关系)。相比之下,我们发现语义网络全局结构属性的度量,如平均聚类系数和最短路径长度,在任务之间不太可靠,并且可能无法提供关于人们如何表示简单概念的可靠个体差异度量。我们讨论了这些结果的含义,并为希望在语义记忆个体差异研究中应用图论分析的研究人员提供了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验