Suppr超能文献

基于词汇联想规范的网络的图论属性:对词汇语义记忆模型的启示

Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory.

作者信息

Gruenenfelder Thomas M, Recchia Gabriel, Rubin Tim, Jones Michael N

机构信息

Department of Psychological and Brain Sciences, Indiana University.

出版信息

Cogn Sci. 2016 Aug;40(6):1460-95. doi: 10.1111/cogs.12299. Epub 2015 Oct 9.

Abstract

We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on an associative network (POC) successfully predicted all of the network properties and predicted a word's top five associates as well as or better than the better of the two constituent models. The results suggest that participants switch between a contextual representation and an associative network when generating free associations. We discuss the role that each of these representations may play in lexical semantic memory. Concordant with recent multicomponent theories of semantic memory, the associative network may encode coordinate relations between concepts (e.g., the relation between pea and bean, or between sparrow and robin), and contextual representations may be used to process information about more abstract concepts.

摘要

我们比较了三种不同的词汇语义记忆上下文模型(比格犬模型、潜在语义分析模型和主题模型)以及一个简单联想模型(POC)预测从词语联想规范中得出的语义网络属性的能力。没有一个语义模型能够准确预测所有的网络属性。所有这三种上下文模型都过度预测了规范中的聚类,而联想模型则预测不足。只有一个混合模型成功地预测了所有的网络属性,该模型假定一些反应基于上下文模型,另一些基于联想网络(POC),并且预测一个词的前五个联想词的效果与两个组成模型中较好的那个一样好或更好。结果表明,参与者在生成自由联想时会在上下文表征和联想网络之间进行切换。我们讨论了这些表征中的每一个可能在词汇语义记忆中所起的作用。与最近的语义记忆多成分理论一致,联想网络可能编码概念之间的并列关系(例如豌豆和豆子之间的关系,或者麻雀和知更鸟之间的关系),而上下文表征可能用于处理关于更抽象概念的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验