Suppr超能文献

基于多元相关分析的多源迁移学习的面部表情识别

Multi-source transfer learning for facial emotion recognition using multivariate correlation analysis.

机构信息

Human-Machine Interaction Lab, Indraprastha Institute of Information Technology, New Delhi, India.

出版信息

Sci Rep. 2023 Nov 28;13(1):21004. doi: 10.1038/s41598-023-48250-x.

Abstract

Deep learning techniques have proven to be effective in solving the facial emotion recognition (FER) problem. However, it demands a significant amount of supervision data which is often unavailable due to privacy and ethical concerns. In this paper, we present a novel approach for addressing the FER problem using multi-source transfer learning. The proposed method leverages the knowledge from multiple data sources of similar domains to inform the model on a related task. The approach involves the optimization of aggregate multivariate correlation among the source tasks trained on the source dataset, thus controlling the transfer of information to the target task. The hypothesis is validated on benchmark datasets for facial emotion recognition and image classification tasks, and the results demonstrate the effectiveness of the proposed method in capturing the group correlation among features, as well as being robust to negative transfer and performing well in few-shot multi-source adaptation. With respect to the state-of-the-art methods MCW and DECISION, our approach shows an improvement of 7% and [Formula: see text]15% respectively.

摘要

深度学习技术已被证明在解决面部情感识别(FER)问题方面非常有效。然而,由于隐私和道德问题,它需要大量的监督数据,而这些数据通常无法获得。在本文中,我们提出了一种使用多源迁移学习解决 FER 问题的新方法。所提出的方法利用了来自多个类似领域数据源的知识,以便为相关任务提供模型信息。该方法涉及优化在源数据集上训练的源任务之间的聚合多元相关性,从而控制信息向目标任务的转移。该假设在面部情感识别和图像分类任务的基准数据集上得到了验证,结果表明该方法在捕捉特征之间的群体相关性方面非常有效,并且对负迁移具有鲁棒性,在少样本多源自适应方面表现良好。与最先进的方法 MCW 和 DECISION 相比,我们的方法分别提高了 7%和 15%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a8/10684585/cef8c21f8123/41598_2023_48250_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验