Suppr超能文献

快速校准动态时间上下文。

Rapid calibration to dynamic temporal contexts.

机构信息

School of Psychology, Keele University, Keele, UK.

NTU Psychology, Nottingham Trent University, Nottingham, UK.

出版信息

Q J Exp Psychol (Hove). 2024 Sep;77(9):1923-1935. doi: 10.1177/17470218231219507. Epub 2023 Dec 30.

Abstract

The prediction of future events and the preparation of appropriate behavioural reactions rely on an accurate perception of temporal regularities. In dynamic environments, temporal regularities are subject to slow and sudden changes, and adaptation to these changes is an important requirement for efficient behaviour. Bayesian models have proven a useful tool to understand the processing of temporal regularities in humans; yet an open question pertains to the degree of flexibility of the prior that is required for optimal modelling of behaviour. Here we directly compare dynamic models (with continuously changing prior expectations) and static models (a stable prior for each experimental session) with their ability to describe regression effects in interval timing. Our results show that dynamic Bayesian models are superior when describing the responses to slow, continuous environmental changes, whereas static models are more suitable to describe responses to sudden changes. In time perception research, these results will be informative for the choice of adequate computational models and enhance our understanding of the neuronal computations underlying human timing behaviour.

摘要

对未来事件的预测和适当行为反应的准备依赖于对时间规律的准确感知。在动态环境中,时间规律会发生缓慢和突然的变化,适应这些变化是高效行为的重要要求。贝叶斯模型已被证明是理解人类处理时间规律的有用工具;然而,一个悬而未决的问题涉及到为了最优地模拟行为而需要的先验的灵活性程度。在这里,我们直接比较了动态模型(具有不断变化的先验期望)和静态模型(每个实验会话的稳定先验),以比较它们描述区间定时中回归效应的能力。我们的结果表明,当描述对缓慢、连续的环境变化的反应时,动态贝叶斯模型更优越,而静态模型更适合描述对突然变化的反应。在时间感知研究中,这些结果将为选择合适的计算模型提供信息,并增强我们对人类定时行为背后的神经元计算的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55a/11373159/a978117dd9b8/10.1177_17470218231219507-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验