Suppr超能文献

视觉Transformer助力光通信中卓越的轨道角动量(OAM)模式识别

Vision transformers motivating superior OAM mode recognition in optical communications.

作者信息

Merabet Badreddine, Liu Bingyi, Li Zhixiang, Tian Jinglong, Guo Kai, Shah Syed Afaq Ali, Guo Zhongyi

出版信息

Opt Express. 2023 Nov 6;31(23):38958-38969. doi: 10.1364/OE.504841.

Abstract

Orbital angular momentum (OAM) has recently obtained tremendous research interest in free-space optical communications (FSO). During signal transmission within the free-space link, atmospheric turbulence (AT) poses a significant challenge as it diminishes the signal strength and introduce intermodal crosstalk, significantly reducing OAM mode detection accuracy. This issue directly impacts the performance of OAM-based communication systems and leads to a reduction in received information. To address this critical bottleneck of low mode recognition accuracy in OAM-based FSO-communications, a deep learning method based on vision transformers (ViT) is proposed for what we believe is for the first time. Designed carefully by numerous experts, the advanced self-attention mechanism of ViT captures more global information from the input image. To train the model, pretraining on a large dataset, named IMAGENET is conducted. Subsequently, we performed fine-tuning on our specific dataset, consisting of OAM beams that have undergone varying AT strengths. The computer simulation shows that based on ViT method, the multiple OAM modes can be recognized with a high accuracy (nearly 100%) under weak-to-moderate turbulence and with almost 98% accuracy even under long transmission distance with strong turbulence ( 2=1×10). Our findings highlight that leveraging ViT enables robust detection of complex OAM beams, mitigating the adverse effects caused by atmospheric turbulence.

摘要

轨道角动量(OAM)最近在自由空间光通信(FSO)领域获得了极大的研究关注。在自由空间链路中的信号传输过程中,大气湍流(AT)构成了重大挑战,因为它会削弱信号强度并引入模式间串扰,显著降低OAM模式检测精度。这个问题直接影响基于OAM的通信系统的性能,并导致接收信息减少。为了解决基于OAM的FSO通信中低模式识别精度这一关键瓶颈,我们首次提出了一种基于视觉Transformer(ViT)的深度学习方法。经过众多专家精心设计,ViT的先进自注意力机制从输入图像中捕获更多全局信息。为了训练该模型,我们在一个名为IMAGENET的大型数据集上进行了预训练。随后,我们在由经历了不同强度大气湍流的OAM光束组成的特定数据集上进行了微调。计算机模拟表明,基于ViT方法,在弱到中等湍流条件下,多种OAM模式能够以高精度(接近100%)被识别,即使在强湍流(2 = 1×10)的长传输距离下,识别准确率也几乎达到98%。我们的研究结果表明,利用ViT能够对复杂的OAM光束进行稳健检测,减轻大气湍流造成的不利影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验