Shastri Rajveer K, Shastri Aparna R, Nitnaware Prashant P, Padulkar Digambar M
Electronics and Telecommunication, Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering and Technology, Baramati, Maharashtra, India.
Computer Engineering, Pillai College of Engineering, Mumbai, India.
Network. 2024 Feb;35(1):1-26. doi: 10.1080/0954898X.2023.2270040. Epub 2024 Feb 8.
In the diagnosis of cardiac disorders Heart sound has a major role, and early detection is crucial to safeguard the patients. Computerized strategies of heart sound classification advocate intensive and more exact results in a quick and better manner. sing a hybrid optimization-controlled deep learning strategy this paper proposed an automatic heart sound classification module. The parameter tuning of the Deep Neural Network (DNN) classifier in a satisfactory manner is the importance of this research which depends on the Hybrid Sneaky optimization algorithm. The developed sneaky optimization algorithm inherits the traits of questing and societal search agents. Moreover, input data from the Phonocardiogram (PCG) database undergoes the process of feature extraction which extract the important features, like statistical, Heart Rate Variability (HRV), and to enhance the performance of this model, the features of Mel frequency Cepstral coefficients (MFCC) are assisted. The developed Sneaky optimization-based DNN classifier's performance is determined in respect of the metrics, namely precision, accuracy, specificity, and sensitivity, which are around 97%, 96.98%, 97%, and 96.9%, respectively.
在心疾病的诊断中,心音起着重要作用,早期检测对于保护患者至关重要。心音分类的计算机化策略主张以快速且更好的方式获得密集且更精确的结果。本文采用混合优化控制的深度学习策略,提出了一种自动心音分类模块。以令人满意的方式对深度神经网络(DNN)分类器进行参数调整是本研究的重点,这取决于混合 Sneaky 优化算法。所开发的 Sneaky 优化算法继承了探索和社会搜索代理的特性。此外,来自心音图(PCG)数据库的输入数据要经过特征提取过程,提取重要特征,如统计特征、心率变异性(HRV),并且为了提高该模型的性能,还辅助使用了梅尔频率倒谱系数(MFCC)特征。所开发的基于 Sneaky 优化的 DNN 分类器的性能根据精度、准确率、特异性和灵敏度等指标来确定,这些指标分别约为 97%、96.98%、97%和 96.9%。