用于小儿肺音分析的人工智能模型:系统评价与荟萃分析

Artificial Intelligence Models for Pediatric Lung Sound Analysis: Systematic Review and Meta-Analysis.

作者信息

Park Ji Soo, Park Sa-Yoon, Moon Jae Won, Kim Kwangsoo, Suh Dong In

机构信息

Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.

The Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul, Republic of Korea.

出版信息

J Med Internet Res. 2025 Apr 18;27:e66491. doi: 10.2196/66491.

Abstract

BACKGROUND

Pediatric respiratory diseases, including asthma and pneumonia, are major causes of morbidity and mortality in children. Auscultation of lung sounds is a key diagnostic tool but is prone to subjective variability. The integration of artificial intelligence (AI) and machine learning (ML) with electronic stethoscopes offers a promising approach for automated and objective lung sound.

OBJECTIVE

This systematic review and meta-analysis assess the performance of ML models in pediatric lung sound analysis. The study evaluates the methodologies, model performance, and database characteristics while identifying limitations and future directions for clinical implementation.

METHODS

A systematic search was conducted in Medline via PubMed, Embase, Web of Science, OVID, and IEEE Xplore for studies published between January 1, 1990, and December 16, 2024. Inclusion criteria are as follows: studies developing ML models for pediatric lung sound classification with a defined database, physician-labeled reference standard, and reported performance metrics. Exclusion criteria are as follows: studies focusing on adults, cardiac auscultation, validation of existing models, or lacking performance metrics. Risk of bias was assessed using a modified Quality Assessment of Diagnostic Accuracy Studies (version 2) framework. Data were extracted on study design, dataset, ML methods, feature extraction, and classification tasks. Bivariate meta-analysis was performed for binary classification tasks, including wheezing and abnormal lung sound detection.

RESULTS

A total of 41 studies met the inclusion criteria. The most common classification task was binary detection of abnormal lung sounds, particularly wheezing. Pooled sensitivity and specificity for wheeze detection were 0.902 (95% CI 0.726-0.970) and 0.955 (95% CI 0.762-0.993), respectively. For abnormal lung sound detection, pooled sensitivity was 0.907 (95% CI 0.816-0.956) and specificity 0.877 (95% CI 0.813-0.921). The most frequently used feature extraction methods were Mel-spectrogram, Mel-frequency cepstral coefficients, and short-time Fourier transform. Convolutional neural networks were the predominant ML model, often combined with recurrent neural networks or residual network architectures. However, high heterogeneity in dataset size, annotation methods, and evaluation criteria were observed. Most studies relied on small, single-center datasets, limiting generalizability.

CONCLUSIONS

ML models show high accuracy in pediatric lung sound analysis, but face limitations due to dataset heterogeneity, lack of standard guidelines, and limited external validation. Future research should focus on standardized protocols and the development of large-scale, multicenter datasets to improve model robustness and clinical implementation.

摘要

背景

小儿呼吸道疾病,包括哮喘和肺炎,是儿童发病和死亡的主要原因。肺部听诊是一种关键的诊断工具,但容易受到主观差异的影响。人工智能(AI)和机器学习(ML)与电子听诊器的结合为自动、客观的肺部听诊提供了一种有前景的方法。

目的

本系统评价和荟萃分析评估ML模型在小儿肺部听诊分析中的性能。该研究评估了方法、模型性能和数据库特征,同时确定了临床应用的局限性和未来方向。

方法

通过PubMed、Embase、Web of Science、OVID和IEEE Xplore在Medline中对1990年1月1日至2024年12月16日发表的研究进行系统检索。纳入标准如下:使用定义的数据库、医生标记的参考标准和报告的性能指标开发用于小儿肺部听诊分类的ML模型的研究。排除标准如下:关注成人、心脏听诊、现有模型验证或缺乏性能指标的研究。使用改良的诊断准确性研究质量评估(第2版)框架评估偏倚风险。提取关于研究设计、数据集、ML方法、特征提取和分类任务的数据。对二元分类任务进行双变量荟萃分析,包括哮鸣音和异常肺部听诊检测。

结果

共有41项研究符合纳入标准。最常见的分类任务是异常肺部听诊的二元检测,尤其是哮鸣音。哮鸣音检测的合并敏感性和特异性分别为0.902(95%CI 0.726-0.970)和0.955(95%CI 0.762-0.993)。对于异常肺部听诊检测,合并敏感性为0.907(95%CI 0.816-0.956),特异性为0.877(95%CI 0.813-0.921)。最常用的特征提取方法是梅尔频谱图、梅尔频率倒谱系数和短时傅里叶变换。卷积神经网络是主要的ML模型,通常与循环神经网络或残差网络架构相结合。然而,观察到数据集大小、注释方法和评估标准存在高度异质性。大多数研究依赖于小的、单中心的数据集,限制了可推广性。

结论

ML模型在小儿肺部听诊分析中显示出高准确性,但由于数据集异质性、缺乏标准指南和外部验证有限而面临局限性。未来的研究应侧重于标准化方案和大规模多中心数据集的开发,以提高模型的稳健性和临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ac/12048790/7ab584fb751e/jmir_v27i1e66491_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索