Institute of Physics, Technische Universität Chemnitz, Chemnitz, Germany.
Weierstraß Institute, Berlin, Germany.
J Biophotonics. 2024 Mar;17(3):e202300358. doi: 10.1002/jbio.202300358. Epub 2023 Dec 15.
The cochlea forms a key element of the human auditory system in the temporal bone. Damage to the cochlea continues to produce significant impairment for sensory reception of environmental stimuli. To improve this impairment, the optical cochlear implant forms a new research approach. A prerequisite for this method is to understand how light propagation, as well as scattering, reflection, and absorption, takes place within the cochlea. We offer a method to study the light distribution in the human cochlea through phantom materials which have the objective to mimic the optical behavior of bone and Monte-Carlo simulations. The calculation of an angular distribution after scattering requires a phase function. Often approximate functions like Henyey-Greenstein, two-term Henyey-Greenstein or Legendre polynomial decompositions are used as phase function. An alternative is to exactly calculate a Mie distribution for each scattering event. This method provides a better fit to the data measured in this work.
耳蜗是颞骨中人类听觉系统的关键组成部分。耳蜗损伤会持续导致对环境刺激的感觉接收产生重大障碍。为了改善这种障碍,光耳蜗植入提供了一种新的研究方法。该方法的前提是要了解光在耳蜗内的传播方式,以及散射、反射和吸收的情况。我们提供了一种通过模拟骨的光学行为的仿体材料来研究人耳蜗内光分布的方法,并结合蒙特卡罗模拟。散射后的角分布的计算需要相位函数。通常,像 Henyey-Greenstein、双项 Henyey-Greenstein 或勒让德多项式分解这样的近似函数被用作相位函数。另一种选择是为每个散射事件精确计算 Mie 分布。该方法与本工作中测量的数据拟合得更好。