Suppr超能文献

高活性 CYP450 全细胞生物催化剂选择性羟化睾酮的效率研究。

Efficiency aspects of regioselective testosterone hydroxylation with highly active CYP450-based whole-cell biocatalysts.

机构信息

Department of Solar Materials, Leipzig, Germany.

Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany.

出版信息

Microb Biotechnol. 2024 Jan;17(1):e14378. doi: 10.1111/1751-7915.14378. Epub 2023 Nov 29.

Abstract

Steroid hydroxylations belong to the industrially most relevant reactions catalysed by cytochrome P450 monooxygenases (CYP450s) due to the pharmacological relevance of hydroxylated derivatives. The implementation of respective bioprocesses at an industrial scale still suffers from several limitations commonly found in CYP450 catalysis, that is low turnover rates, enzyme instability, inhibition and toxicity related to the substrate(s) and/or product(s). Recently, we achieved a new level of steroid hydroxylation rates by introducing highly active testosterone-hydroxylating CYP450 BM3 variants together with the hydrophobic outer membrane protein AlkL into Escherichia coli-based whole-cell biocatalysts. However, the activity tended to decrease, which possibly impedes overall productivities and final product titres. In this study, a considerable instability was confirmed and subject to a systematic investigation regarding possible causes. In-depth evaluation of whole-cell biocatalyst kinetics and stability revealed a limitation in substrate availability due to poor testosterone solubility as well as inhibition by the main product 15β-hydroxytestosterone. Instability of CYP450 BM3 variants was disclosed as another critical factor, which is of general significance for CYP450-based biocatalysis. Presented results reveal biocatalyst, reaction and process engineering strategies auguring well for industrial implementation of the developed steroid hydroxylation platform.

摘要

甾体羟化反应属于细胞色素 P450 单加氧酶(CYP450s)催化的最具工业相关性的反应,因为羟化衍生物具有药理学相关性。在工业规模上实施相应的生物工艺仍然受到 CYP450 催化中常见的几种限制,即低转化速率、酶不稳定、与底物和/或产物相关的抑制和毒性。最近,我们通过向基于大肠杆菌的全细胞生物催化剂中引入高活性的睾酮羟化 CYP450 BM3 变体和疏水性外膜蛋白 AlkL,实现了新的甾体羟化速率水平。然而,活性趋于下降,这可能会阻碍整体生产率和最终产物浓度。在这项研究中,确认了相当大的不稳定性,并对可能的原因进行了系统的调查。对全细胞生物催化剂动力学和稳定性的深入评估揭示了由于睾酮溶解度差以及主要产物 15β-羟睾酮的抑制,导致底物可用性受限。CYP450 BM3 变体的不稳定性被揭示为另一个关键因素,这对于基于 CYP450 的生物催化具有普遍意义。目前的结果揭示了生物催化剂、反应和过程工程策略,为开发的甾体羟化平台的工业实施带来了良好的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243e/10832557/07c193ec057d/MBT2-17-e14378-g006.jpg

相似文献

8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验