Suppr超能文献

未发现适合稳定基于 CYP450 BM3 的全细胞生物催化剂的高甾体羟化活性的策略。

Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts.

机构信息

Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany.

Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany.

出版信息

PLoS One. 2024 Sep 6;19(9):e0309965. doi: 10.1371/journal.pone.0309965. eCollection 2024.

Abstract

The implementation of biocatalytic steroid hydroxylation processes plays a crucial role in the pharmaceutical industry due to a plethora of medicative effects of hydroxylated steroid derivatives and their crucial role in drug approval processes. Cytochrome P450 monooxygenases (CYP450s) typically constitute the key enzymes catalyzing these reactions, but commonly entail drawbacks such as poor catalytic rates and the dependency on additional redox proteins for electron transfer from NAD(P)H to the active site. Recently, these bottlenecks were overcome by equipping Escherichia coli cells with highly active variants of the self-sufficient single-component CYP450 BM3 together with hydrophobic outer membrane proteins facilitating cellular steroid uptake. The combination of the BM3 variant KSA14m and the outer membrane pore AlkL enabled exceptionally high testosterone hydroxylation rates of up to 45 U gCDW-1 for resting (i.e., living but non-growing) cells. However, a rapid loss of specific activity heavily compromised final product titers and overall space-time yields. In this study, several stabilization strategies were evaluated on enzyme-, cell-, and reaction level. However, neither changes in biocatalyst configuration nor variation of cultivation media, expression systems, or inducer concentrations led to considerable improvement. This qualified the so-far used genetic construct pETM11-ksa14m-alkL, M9 medium, and the resting-cell state as the best options enabling comparatively efficient activity along with fast growth prior to biotransformation. In summary, we report several approaches not enabling a stabilization of the high testosterone hydroxylation rates, providing vital guidance for researchers tackling similar CYP450 stability issues. A comparison with more stable natively steroid-hydroxylating CYP106A2 and CYP154C5 in equivalent setups further highlighted the high potential of the investigated CYP450 BM3-based whole-cell biocatalysts. The immense and continuously developing repertoire of enzyme engineering strategies provides promising options to stabilize the highly active biocatalysts.

摘要

生物催化甾体羟化过程的实施在制药行业中起着至关重要的作用,因为羟化甾体衍生物具有多种医疗效果,并且它们在药物审批过程中起着关键作用。细胞色素 P450 单加氧酶 (CYP450s) 通常构成催化这些反应的关键酶,但通常存在一些缺点,例如催化速率低,以及需要额外的氧化还原蛋白将电子从 NAD(P)H 转移到活性位点。最近,通过在大肠杆菌细胞中装备具有高度活性的自足单组分 CYP450 BM3 变体,以及促进细胞甾体摄取的疏水性外膜蛋白,克服了这些瓶颈。CYP450 BM3 变体 KSA14m 和外膜孔 AlkL 的组合使休息(即,存活但不生长)细胞的睾酮羟化速率达到高达 45 U gCDW-1 的异常高值。然而,特异性活性的快速丧失严重影响了最终产物的滴度和整体时空产率。在这项研究中,在酶、细胞和反应水平上评估了几种稳定策略。然而,无论是生物催化剂结构的改变,还是培养介质、表达系统或诱导剂浓度的变化,都没有导致显著的改善。这使迄今为止使用的遗传构建体 pETM11-ksa14m-alkL、M9 培养基和休息细胞状态成为最佳选择,使比较有效的活性与生物转化前的快速生长相结合。总之,我们报告了几种不能稳定高睾酮羟化速率的方法,为解决类似 CYP450 稳定性问题的研究人员提供了重要的指导。与在等效设置中更稳定的天然甾体羟化 CYP106A2 和 CYP154C5 的比较进一步突出了所研究的基于 CYP450 BM3 的全细胞生物催化剂的高潜力。不断发展的酶工程策略提供了有希望的选择,可以稳定高活性的生物催化剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4739/11379211/e4e097b2874d/pone.0309965.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验