Yang Yuqian, Xiong Qiu, Wu Jihuai, Tu Yongguang, Sun Tianxiao, Li Guixiang, Liu Xuping, Wang Xiaobing, Du Yitian, Deng Chunyan, Tan Lina, Wei Yuelin, Lin Yu, Huang Yunfang, Huang Miaoliang, Sun Weihai, Fan Leqing, Xie Yiming, Lin Jianming, Lan Zhang, Stacchinii Valerio, Musiienko Artem, Hu Qin, Gao Peng, Abate Antonio, Nazeeruddin Mohammad Khaja
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China.
Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489, Berlin, Germany.
Adv Mater. 2024 Feb;36(7):e2310800. doi: 10.1002/adma.202310800. Epub 2023 Dec 7.
The best research-cell efficiency of perovskite solar cells (PSCs) is comparable with that of mature silicon solar cells (SSCs); However, the industrial development of PSCs lags far behind SSCs. PSC is a multiphase and multicomponent system, whose consequent interfacial energy loss and carrier loss seriously affect the performance and stability of devices. Here, by using spinodal decomposition, a spontaneous solid phase segregation process, in situ introduces a poly(3-hexylthiophene)/perovskite (P3HT/PVK) heterointerface with interpenetrating structure in PSCs. The P3HT/PVK heterointerface tunes the energy alignment, thereby reducing the energy loss at the interface; The P3HT/PVK interpenetrating structure bridges a transport channel, thus decreasing the carrier loss at the interface. The simultaneous mitigation of energy and carrier losses by P3HT/PVK heterointerface enables n-i-p geometry device a power conversion efficiency of 24.53% (certified 23.94%) and excellent stability. These findings demonstrate an ingenious strategy to optimize the performance of PSCs by heterointerface via Spinodal decomposition.
钙钛矿太阳能电池(PSCs)的最佳研究电池效率可与成熟的硅太阳能电池(SSCs)相媲美;然而,PSCs的工业发展远远落后于SSCs。PSC是一个多相多组分体系,其随之产生的界面能量损失和载流子损失严重影响器件的性能和稳定性。在此,通过使用旋节线分解(一种自发的固-相分离过程),原位引入具有互穿结构的聚(3-己基噻吩)/钙钛矿(P3HT/PVK)异质界面到PSCs中。P3HT/PVK异质界面调节了能量排列,从而降低了界面处的能量损失;P3HT/PVK互穿结构搭建了一个传输通道,进而减少了界面处的载流子损失。P3HT/PVK异质界面同时减轻能量和载流子损失,使n-i-p结构器件实现了24.53%的功率转换效率(认证值为23.94%)以及出色的稳定性。这些发现展示了一种通过旋节线分解经由异质界面优化PSCs性能的巧妙策略。