Suppr超能文献

通过轨道 Rashba 效应实现轻金属氧化物/铁磁金属双层膜中的电流诱导磁化翻转

Current-Induced Magnetization Switching in Light-Metal-Oxide/Ferromagnetic-Metal Bilayers via Orbital Rashba Effect.

作者信息

Huang QiKun, Liu Senmiao, Yang Tianxiang, Xie Ronghuan, Cai Li, Cao Qiang, Lü Weiming, Bai Lihui, Tian Yufeng, Yan Shishen

机构信息

Spintronics Institute, University of Jinan, Jinan 250022, China.

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

出版信息

Nano Lett. 2023 Dec 13;23(23):11323-11329. doi: 10.1021/acs.nanolett.3c03972. Epub 2023 Nov 29.

Abstract

The orbital angular momentum (OAM) generation as well as its associated orbital torque is currently a matter of great interest in spin-orbitronics and is receiving increasing attention. In particular, recent theoretical work predicts that the oxidized light metal Cu can serve as an efficient OAM generator through its surface orbital Rashba effect. Here, for the first time, the crucial current-induced magnetic-field-free in-plane magnetization reversal is experimentally demonstrated in CoFeB/CuO bilayers without any heavy elements. We show that the critical current density can be comparable to that of strong spin-orbit coupling systems with heavy metals (Pt and Ta) and that the magnetization reversal mechanism is governed by coherent rotation in the grains through the second-harmonic and magneto-optical Kerr effect measurements. Our results indicate that light metal oxides can play an equally important role as heavy metals in magnetization reversal, broadening the choice of materials for engineering spintronic devices.

摘要

轨道角动量(OAM)的产生及其相关的轨道扭矩目前是自旋轨道电子学中备受关注的问题,并且受到越来越多的关注。特别是,最近的理论工作预测,氧化轻金属铜可以通过其表面轨道 Rashba 效应作为一种高效的 OAM 发生器。在此,首次在没有任何重元素的 CoFeB/CuO 双层中通过实验证明了关键的电流诱导无磁场面内磁化反转。我们表明,临界电流密度可以与含有重金属(Pt 和 Ta)的强自旋轨道耦合系统相当,并且通过二次谐波和磁光克尔效应测量表明,磁化反转机制受晶粒中的相干旋转支配。我们的结果表明,轻金属氧化物在磁化反转中可以发挥与重金属同等重要的作用,拓宽了工程自旋电子器件材料的选择范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验