Xu Xinkai, Zhang Dainan, Liao Zhimin, Yan Peng, Wang Yixin, Zhang Lei, Zhong Zhiyong, Bai Feiming, Qu Yuanjing, Zhang Huaiwu, Jin Lichuan
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
Small. 2024 Nov;20(44):e2403881. doi: 10.1002/smll.202403881. Epub 2024 Jul 14.
Orbital angular momentum flow can be used to develop a low-dissipation electronic information device by manipulating the orbital current. However, efficiently generating and fully harnessing orbital currents is a formidable challenge. In this study, an approach is presented that induces a colossal orbital current by gradient oxidation in Pt/Ta to enhance spin-orbit torque (SOT) and achieve high-efficiency magnetization switching. The maximum efficiency of the SOT before and after the gradient oxidation of Ta is improved relative to that of Pt by ≈600 and 1200%, respectively. The large SOT originates from the colossal orbital current because of the orbital Rashba-Edelstein effect induced by the gradient oxidation of Ta. In addition, a large spin-to-charge conversion efficiency is observed in yttrium iron garnet/Pt/TaO because of the inverse orbital Rashba-Edelstein effect. Harnessing the orbital current can help effectively minimize the critical current density of the current-induced magnetization switching to 2.26-1.08 × 10 A cm, marking a 12-fold reduction compared to that using Pt. This findings provide a new path for research on low-dissipation spin-orbit devices and improve the tunability of orbital current generation.
轨道角动量流可通过操控轨道电流来用于开发低耗散电子信息器件。然而,高效产生并充分利用轨道电流是一项艰巨的挑战。在本研究中,提出了一种方法,即通过在Pt/Ta中进行梯度氧化来诱导巨大的轨道电流,以增强自旋轨道扭矩(SOT)并实现高效磁化翻转。相对于Pt,Ta梯度氧化前后SOT的最大效率分别提高了约600%和1200%。由于Ta的梯度氧化诱导的轨道Rashba-Edelstein效应,大的SOT源于巨大的轨道电流。此外,由于逆轨道Rashba-Edelstein效应,在钇铁石榴石/Pt/TaO中观察到了大的自旋-电荷转换效率。利用轨道电流有助于有效地将电流诱导磁化翻转的临界电流密度最小化至2.26 - 1.08×10 A/cm,与使用Pt相比降低了12倍。这些发现为低耗散自旋轨道器件的研究提供了一条新途径,并提高了轨道电流产生的可调性。