School of Mathematical Sciences, Huaibei Normal University, Huaibei, China.
College of Education, Nanchang Normal College of Applied Technology, Nanchang, China.
PLoS One. 2023 Nov 29;18(11):e0294938. doi: 10.1371/journal.pone.0294938. eCollection 2023.
The aim of this paper is to introduce a novel category of radial basis functions that incorporate smoothing techniques. Initially, we employ the power augmented and shape parameter schemes to create the radial basis functions. Subsequently, we apply the newly-constructed radial basis functions using the traditional collocation method and singular values decomposition algorithm to solve the corresponding linear system equations. Finally, we analyze several pairs of radial basis functions in depth to address physical problems linked to thermal science that are governed by partial differential equations. The numerical results demonstrate that the radial basis functions constructed using the power augmented and shape parameter schemes exhibit remarkable performance.
本文旨在引入一类新的基于径向基函数的方法,该方法结合了平滑技术。首先,我们采用幂增和形状参数方案来构建径向基函数。然后,我们使用传统的配置方法和奇异值分解算法应用新构造的径向基函数来求解相应的线性方程组。最后,我们深入分析了几对与热科学相关的偏微分方程控制的物理问题的径向基函数。数值结果表明,采用幂增和形状参数方案构造的径向基函数具有优异的性能。