Suppr超能文献

同步的几何学:使用系统间递归网络量化个体间应激生理信号的耦合方向。

The geometry of synchronization: quantifying the coupling direction of physiological signals of stress between individuals using inter-system recurrence networks.

作者信息

Hasselman Fred, den Uil Luciënne, Koordeman Renske, de Looff Peter, Otten Roy

机构信息

Behavioural Science Institute, Radboud University, Nijmegen, Netherlands.

Department of Research and Development, Pluryn, Nijmegen, Netherlands.

出版信息

Front Netw Physiol. 2023 Nov 1;3:1289983. doi: 10.3389/fnetp.2023.1289983. eCollection 2023.

Abstract

In the study of synchronization dynamics between interacting systems, several techniques are available to estimate coupling strength and coupling direction. Currently, there is no general 'best' method that will perform well in most contexts. Inter-system recurrence networks (IRN) combine auto-recurrence and cross-recurrence matrices to create a graph that represents interacting networks. The method is appealing because it is based on cross-recurrence quantification analysis, a well-developed method for studying synchronization between 2 systems, which can be expanded in the IRN framework to include N > 2 interacting networks. In this study we examine whether IRN can be used to analyze coupling dynamics between physiological variables (acceleration, blood volume pressure, electrodermal activity, heart rate and skin temperature) observed in a client in residential care with severe to profound intellectual disabilities (SPID) and their professional caregiver. Based on the cross-clustering coefficients of the IRN conclusions about the coupling direction (client or caregiver drives the interaction) can be drawn, however, deciding between bi-directional coupling or no coupling remains a challenge. Constructing the full IRN, based on the multivariate time series of five coupled processes, reveals the existence of potential feedback loops. Further study is needed to be able to determine dynamics of coupling between the different layers.

摘要

在相互作用系统间同步动力学的研究中,有几种技术可用于估计耦合强度和耦合方向。目前,没有一种通用的“最佳”方法能在大多数情况下都表现良好。系统间递归网络(IRN)结合了自递归和交叉递归矩阵来创建一个表示相互作用网络的图。该方法很有吸引力,因为它基于交叉递归量化分析,这是一种研究两个系统间同步的成熟方法,可在IRN框架中扩展以纳入N > 2个相互作用网络。在本研究中,我们检验IRN是否可用于分析在一家为重度至极重度智力残疾(SPID)患者提供住宿护理的机构中,观察到的患者与其专业护理人员之间生理变量(加速度、血容量压力、皮肤电活动、心率和皮肤温度)的耦合动力学。基于IRN的交叉聚类系数,可以得出关于耦合方向(患者或护理人员驱动相互作用)的结论,然而,在双向耦合和无耦合之间做出决定仍然是一个挑战。基于五个耦合过程的多变量时间序列构建完整的IRN,揭示了潜在反馈回路的存在。需要进一步研究以确定不同层之间耦合的动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3778/10646523/3a0c25a6606c/fnetp-03-1289983-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验