Suppr超能文献

利用视频信号的无监督聚类对运动过多性、强直性和强直阵挛性癫痫发作进行自动分类。

Automatic classification of hyperkinetic, tonic, and tonic-clonic seizures using unsupervised clustering of video signals.

作者信息

Ojanen Petri, Kertész Csaba, Morales Elizabeth, Rai Pragya, Annala Kaapo, Knight Andrew, Peltola Jukka

机构信息

Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Neuro Event Labs, Tampere, Finland.

出版信息

Front Neurol. 2023 Nov 2;14:1270482. doi: 10.3389/fneur.2023.1270482. eCollection 2023.

Abstract

INTRODUCTION

This study evaluated the accuracy of motion signals extracted from video monitoring data to differentiate epileptic motor seizures in patients with drug-resistant epilepsy. 3D near-infrared video was recorded by the Nelli seizure monitoring system (Tampere, Finland).

METHODS

10 patients with 130 seizures were included in the training dataset, and 17 different patients with 98 seizures formed the testing dataset. Only seizures with unequivocal hyperkinetic, tonic, and tonic-clonic semiology were included. Motion features from the catch22 feature collection extracted from video were explored to transform the patients' videos into numerical time series for clustering and visualization.

RESULTS

Changes in feature generation provided incremental discrimination power to differentiate between hyperkinetic, tonic, and tonic-clonic seizures. Temporal motion features showed the best results in the unsupervised clustering analysis. Using these features, the system differentiated hyperkinetic, tonic and tonic-clonic seizures with 91, 88, and 45% accuracy after 100 cross-validation runs, respectively. F1-scores were 93, 90, and 37%, respectively. Overall accuracy and f1-score were 74%.

CONCLUSION

The selected features of motion distinguished semiological differences within epileptic seizure types, enabling seizure classification to distinct motor seizure types. Further studies are needed with a larger dataset and additional seizure types. These results indicate the potential of video-based hybrid seizure monitoring systems to facilitate seizure classification improving the algorithmic processing and thus streamlining the clinical workflow for human annotators in hybrid (algorithmic-human) seizure monitoring systems.

摘要

引言

本研究评估了从视频监测数据中提取的运动信号在区分耐药性癫痫患者癫痫运动发作方面的准确性。3D近红外视频由Nelli癫痫发作监测系统(芬兰坦佩雷)记录。

方法

10名有130次发作的患者纳入训练数据集,17名有98次发作的不同患者组成测试数据集。仅纳入具有明确的运动过多、强直和强直阵挛发作症状学的发作。探索从视频中提取的catch22特征集的运动特征,将患者的视频转换为数值时间序列以进行聚类和可视化。

结果

特征生成的变化为区分运动过多、强直和强直阵挛发作提供了递增的辨别力。时间运动特征在无监督聚类分析中显示出最佳结果。使用这些特征,系统在100次交叉验证运行后分别以91%、88%和45%的准确率区分运动过多、强直和强直阵挛发作。F1分数分别为93%、90%和37%。总体准确率和F1分数为74%。

结论

所选的运动特征区分了癫痫发作类型内的症状学差异,能够将发作分类为不同的运动发作类型。需要使用更大的数据集和更多的发作类型进行进一步研究。这些结果表明基于视频的混合癫痫发作监测系统在促进发作分类、改进算法处理从而简化混合(算法-人工)癫痫发作监测系统中人工标注员的临床工作流程方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9c/10652877/6b76b30e90e2/fneur-14-1270482-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验