Suppr超能文献

癫痫发作中情绪和肌张力障碍的自动视频分析。

Automated video analysis of emotion and dystonia in epileptic seizures.

机构信息

INRIA Université Nice Côte d'Azur, France.

Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.

出版信息

Epilepsy Res. 2022 Aug;184:106953. doi: 10.1016/j.eplepsyres.2022.106953. Epub 2022 May 28.

Abstract

OBJECTIVE

To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures.

METHODS

A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis.

RESULTS

We studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83).

SIGNIFICANCE

Here, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study.

摘要

目的

探究深度学习方法在癫痫发作视频数据中鉴别局灶性耐药性癫痫患者的运动障碍和情感等个体征象特征的准确性。

方法

本研究使用立体脑电图探查局灶性耐药性癫痫患者的癫痫发作视频数据集。所有患者均根据 ILAE 定义发生过运动障碍性(HKN)癫痫发作。由一位经验丰富的临床医生记录每次癫痫发作中是否存在(1)运动障碍和(2)情感特征。使用外观和骨骼关键点、面部和身体信息的多流深度学习模型,结合图卷积神经网络,来测试运动障碍和情感的鉴别能力。使用受试者留一法评估分类准确性。

结果

我们研究了 19 名患者的 38 个 HKN 癫痫发作视频。根据 ILAE 标准进行视觉分析,9/19 名患者被认为存在运动障碍,9/19 名患者被认为存在情感迹象。有两名患者同时存在运动障碍和情感迹象。应用深度学习多流模型,面部外观的时空特征在检测情感方面表现出最佳准确性(F1 得分为 0.84),而骨骼关键点检测在检测运动障碍方面表现最佳(F1 得分为 0.83)。

意义

本研究调查了视频数据的深度学习,以分析运动障碍性癫痫发作中个体征象特征。个体征象特征的自动分类是可行的,值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验