Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan.
Departments of General Internal Medicine, Experimental Therapeutics, and Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
JAMA Oncol. 2024 Jan 1;10(1):95-102. doi: 10.1001/jamaoncol.2023.5120.
Substantial heterogeneity exists in treatment recommendations across molecular tumor boards (MTBs), especially for biomarkers with low evidence levels; therefore, the learning program is essential.
To determine whether a learning program sharing treatment recommendations for biomarkers with low evidence levels contributes to the standardization of MTBs and to investigate the efficacy of an artificial intelligence (AI)-based annotation system.
DESIGN, SETTING, AND PARTICIPANTS: This prospective quality improvement study used 50 simulated cases to assess concordance of treatment recommendations between a central committee and participants. Forty-seven participants applied from April 7 to May 13, 2021. Fifty simulated cases were randomly divided into prelearning and postlearning evaluation groups to assess similar concordance based on previous investigations. Participants included MTBs at hub hospitals, treating physicians at core hospitals, and AI systems. Each participant made treatment recommendations for each prelearning case from registration to June 30, 2021; participated in the learning program on July 18, 2021; and made treatment recommendations for each postlearning case from August 3 to September 30, 2021. Data were analyzed from September 2 to December 10, 2021.
The learning program shared the methodology of making appropriate treatment recommendations, especially for biomarkers with low evidence levels.
The primary end point was the proportion of MTBs that met prespecified accreditation criteria for postlearning evaluations (approximately 90% concordance with high evidence levels and approximately 40% with low evidence levels). Key secondary end points were chronological enhancements in the concordance of treatment recommendations on postlearning evaluations from prelearning evaluations. Concordance of treatment recommendations by an AI system was an exploratory end point.
Of the 47 participants who applied, 42 were eligible. The accreditation rate of the MTBs was 55.6% (95% CI, 35.3%-74.5%; P < .001). Concordance in MTBs increased from 58.7% (95% CI, 52.8%-64.4%) to 67.9% (95% CI, 61.0%-74.1%) (odds ratio, 1.40 [95% CI, 1.06-1.86]; P = .02). In postlearning evaluations, the concordance of treatment recommendations by the AI system was significantly higher than that of MTBs (88.0% [95% CI, 68.7%-96.1%]; P = .03).
The findings of this quality improvement study suggest that use of a learning program improved the concordance of treatment recommendations provided by MTBs to central ones. Treatment recommendations made by an AI system showed higher concordance than that for MTBs, indicating the potential clinical utility of the AI system.
在分子肿瘤委员会(MTB)中,治疗建议存在很大的异质性,尤其是对于证据水平较低的生物标志物;因此,学习计划至关重要。
确定分享低证据水平生物标志物治疗建议的学习计划是否有助于 MTB 的标准化,并研究人工智能(AI)注释系统的功效。
设计、设置和参与者:这项前瞻性质量改进研究使用了 50 个模拟病例来评估中央委员会和参与者之间的治疗建议的一致性。47 名参与者于 2021 年 4 月 7 日至 5 月 13 日申请。50 个模拟病例被随机分为预学习和后学习评估组,以根据先前的研究评估类似的一致性。参与者包括中心医院的 MTB、核心医院的治疗医生和 AI 系统。每个参与者从登记到 2021 年 6 月 30 日为每个预学习病例做出治疗建议;2021 年 7 月 18 日参加学习计划;并在 2021 年 8 月 3 日至 9 月 30 日期间为每个后学习病例做出治疗建议。数据分析于 2021 年 9 月 2 日至 12 月 10 日进行。
学习计划分享了制定适当治疗建议的方法,特别是对于证据水平较低的生物标志物。
主要终点是 MTB 满足后学习评估预定认证标准的比例(高证据水平的一致性约为 90%,低证据水平的一致性约为 40%)。关键次要终点是从预学习评估到后学习评估,治疗建议的一致性的时间上的提高。AI 系统治疗建议的一致性是一个探索性终点。
在申请的 47 名参与者中,有 42 名符合条件。MTB 的认证率为 55.6%(95%CI,35.3%-74.5%;P<0.001)。MTB 的一致性从 58.7%(95%CI,52.8%-64.4%)提高到 67.9%(95%CI,61.0%-74.1%)(优势比,1.40[95%CI,1.06-1.86];P=0.02)。在后学习评估中,AI 系统治疗建议的一致性明显高于 MTB(88.0%[95%CI,68.7%-96.1%];P=0.03)。
这项质量改进研究的结果表明,使用学习计划提高了 MTB 向中央委员会提供的治疗建议的一致性。AI 系统做出的治疗建议显示出比 MTB 更高的一致性,表明 AI 系统具有潜在的临床实用性。