School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.
J Math Biol. 2023 Dec 1;88(1):7. doi: 10.1007/s00285-023-02014-3.
A characteristic of malaria in all its forms is the potential for superinfection (that is, multiple concurrent blood-stage infections). An additional characteristic of Plasmodium vivax malaria is a reservoir of latent parasites (hypnozoites) within the host liver, which activate to cause (blood-stage) relapses. Here, we present a model of hypnozoite accrual and superinfection for P. vivax. To couple host and vector dynamics for a homogeneously-mixing population, we construct a density-dependent Markov population process with countably many types, for which disease extinction is shown to occur almost surely. We also establish a functional law of large numbers, taking the form of an infinite-dimensional system of ordinary differential equations that can also be recovered by coupling expected host and vector dynamics (i.e. a hybrid approximation) or through a standard compartment modelling approach. Recognising that the subset of these equations that model the infection status of the human hosts has precisely the same form as the Kolmogorov forward equations for a Markovian network of infinite server queues with an inhomogeneous batch arrival process, we use physical insight into the evolution of the latter process to write down a time-dependent multivariate generating function for the solution. We use this characterisation to collapse the infinite-compartment model into a single integrodifferential equation (IDE) governing the intensity of mosquito-to-human transmission. Through a steady state analysis, we recover a threshold phenomenon for this IDE in terms of a parameter [Formula: see text] expressible in terms of the primitives of the model, with the disease-free equilibrium shown to be uniformly asymptotically stable if [Formula: see text] and an endemic equilibrium solution emerging if [Formula: see text]. Our work provides a theoretical basis to explore the epidemiology of P. vivax, and introduces a strategy for constructing tractable population-level models of malarial superinfection that can be generalised to allow for greater biological realism in a number of directions.
疟疾病原的一个特征是存在潜在的再感染(即同时存在多种血液阶段感染)。间日疟原虫疟疾的另一个特征是在宿主肝脏中存在潜伏寄生虫(休眠子)的储库,这些休眠子会激活并导致(血液阶段)复发。在这里,我们提出了一种间日疟原虫休眠子积累和再感染的模型。为了将宿主和媒介的动态联系起来,我们构建了一个具有可数多个类型的密度依赖马尔可夫种群过程,该过程表明疾病几乎肯定会灭绝。我们还建立了一个大数定律,其形式为一个无穷维的常微分方程组,也可以通过耦合预期的宿主和媒介动态(即混合近似)或通过标准的隔间建模方法来恢复。我们认识到,这些方程中用于模拟人类宿主感染状态的子集与具有不均匀批量到达过程的无限服务器队列马尔可夫网络的柯尔莫哥洛夫正向方程具有完全相同的形式,我们利用对后者过程的演化的物理洞察力,写出了用于解决方案的时变多元生成函数。我们使用这种特征将无限隔间模型简化为一个单一的积分微分方程(IDE),该方程控制蚊子向人类传播的强度。通过稳态分析,我们根据一个参数 [Formula: see text] 来恢复该 IDE 的阈值现象,该参数 [Formula: see text] 可以用模型的原始参数表示,如果 [Formula: see text],则无病平衡点是一致渐近稳定的,并且如果 [Formula: see text],则会出现地方病平衡点解。我们的工作为探索间日疟原虫的流行病学提供了理论基础,并引入了一种构建可行的疟疾再感染的群体水平模型的策略,该策略可以在多个方向上进行推广,以实现更大的生物学真实性。