School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh.
PLoS Comput Biol. 2024 Mar 14;20(3):e1011931. doi: 10.1371/journal.pcbi.1011931. eCollection 2024 Mar.
Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.
间日疟原虫是世界上分布最广的疟原虫之一,主要分布在东南亚、拉丁美洲和非洲部分地区。间日疟原虫的一个重要特征是它能够作为休眠体(hypnozoites)潜伏在人体肝脏中,并在初次感染后重新激活(即复发感染)。数学建模方法已广泛应用于了解间日疟原虫的动态,并预测干预结果的影响。捕捉间日疟原虫动态的模型与捕捉恶性疟原虫动态的模型不同,因为它们必须考虑到休眠体激活引起的复发。在本文中,我们对 1988 年 1 月至 2023 年 5 月间发表的捕捉间日疟原虫传播动态的数学模型进行了范围界定综述。这项工作的主要目的是提供一个对用于模拟间日疟原虫动态的数学模型和技术的全面总结。通过这样做,我们旨在通过突出当前发表模型中的最佳实践,并强调需要进一步开发模型的地方,为从事数学流行病学、疾病传播和间日疟原虫疟疾其他方面研究的研究人员提供帮助。我们根据使用的是确定性方法还是基于主体的方法对间日疟原虫模型进行了分类。我们概述了用于纳入寄生虫生物学的不同策略、使用多个尺度(体内和群体水平)、重感染、免疫和治疗干预的策略。在已发表的文献中,不同建模方法的基本原理是由手头的研究问题驱动的。一些模型侧重于寄生虫复杂的生物学,而另一些模型则采用简化的假设来避免模型的复杂性。总的来说,关于间日疟原虫数学模型的现有文献涵盖了寄生虫动态的各个方面。我们建议未来的研究应集中于改进间日疟原虫动态建模的关键方面,包括暴露风险的空间异质性和感染易感性的异质性、休眠体变异的积累、恶性疟原虫和间日疟原虫之间的相互作用、免疫的获得以及重感染下的恢复。