School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia.
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.
Bull Math Biol. 2020 Feb 12;82(2):32. doi: 10.1007/s11538-020-00706-1.
Malaria is an infectious disease with an immense global health burden. Plasmodium vivax is the most geographically widespread species of malaria. Relapsing infections, caused by the activation of liver-stage parasites known as hypnozoites, are a critical feature of the epidemiology of Plasmodium vivax. Hypnozoites remain dormant in the liver for weeks or months after inoculation, but cause relapsing infections upon activation. Here, we introduce a dynamic probability model of the activation-clearance process governing both potential relapses and the size of the hypnozoite reservoir. We begin by modelling activation-clearance dynamics for a single hypnozoite using a continuous-time Markov chain. We then extend our analysis to consider activation-clearance dynamics for a single mosquito bite, which can simultaneously establish multiple hypnozoites, under the assumption of independent hypnozoite behaviour. We derive analytic expressions for the time to first relapse and the time to hypnozoite clearance for mosquito bites establishing variable numbers of hypnozoites, both of which are quantities of epidemiological significance. Our results extend those in the literature, which were limited due to an assumption of collective dormancy. Our within-host model can be embedded readily in multiscale models and epidemiological frameworks, with analytic solutions increasing the tractability of statistical inference and analysis. Our work therefore provides a foundation for further work on immune development and epidemiological-scale analysis, both of which are important for achieving the goal of malaria elimination.
疟疾是一种具有巨大全球健康负担的传染病。间日疟原虫是分布最广的疟疾物种。由休眠期寄生虫(称为休眠子)激活引起的复发感染是间日疟原虫流行病学的一个关键特征。休眠子在接种后数周或数月内在肝脏中处于休眠状态,但在激活时会引起复发感染。在这里,我们引入了一个动态概率模型,用于控制潜在复发和休眠子库大小的激活-清除过程。我们首先使用连续时间马尔可夫链为单个休眠子建模激活-清除动力学。然后,我们假设休眠子行为独立,将分析扩展到考虑单个蚊子叮咬的激活-清除动力学,该蚊子叮咬可以同时建立多个休眠子。我们推导出了在蚊子叮咬建立不同数量休眠子的情况下首次复发和休眠子清除的时间的解析表达式,这两个时间都是具有流行病学意义的量。我们的结果扩展了文献中的结果,这些结果受到集体休眠假设的限制。我们的宿主内模型可以很容易地嵌入多尺度模型和流行病学框架中,解析解增加了统计推断和分析的可处理性。因此,我们的工作为免疫发展和流行病学规模分析的进一步工作提供了基础,这对于实现消除疟疾的目标都很重要。