College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.
Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota.
Int J Radiat Oncol Biol Phys. 2024 May 1;119(1):42-55. doi: 10.1016/j.ijrobp.2023.11.050. Epub 2023 Nov 30.
Radiation therapy (RT) has been a primary treatment modality in cancer for decades. Increasing evidence suggests that RT can induce an immunosuppressive shift via upregulation of cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). MDSCs inhibit antitumor immunity through potent immunosuppressive mechanisms and have the potential to be crucial tools for cancer prognosis and treatment. MDSCs interact with many different pathways, desensitizing tumor tissue and interacting with tumor cells to promote therapeutic resistance. Vascular damage induced by RT triggers an inflammatory signaling cascade and potentiates hypoxia in the tumor microenvironment (TME). RT can also drastically modify cytokine and chemokine signaling in the TME to promote the accumulation of MDSCs. RT activation of the cGAS-STING cytosolic DNA sensing pathway recruits MDSCs through a CCR2-mediated mechanism, inhibiting the production of type 1 interferons and hampering antitumor activity and immune surveillance in the TME. The upregulation of hypoxia-inducible factor-1 and vascular endothelial growth factor mobilizes MDSCs to the TME. After recruitment, MDSCs promote immunosuppression by releasing reactive oxygen species and upregulating nitric oxide production through inducible nitric oxide synthase expression to inhibit cytotoxic activity. Overexpression of arginase-1 on subsets of MDSCs degrades L-arginine and downregulates CD3ζ, inhibiting T-cell receptor reactivity. This review explains how radiation promotes tumor resistance through activation of immunosuppressive MDSCs in the TME and discusses current research targeting MDSCs, which could serve as a promising clinical treatment strategy in the future.
放射治疗(RT)几十年来一直是癌症的主要治疗方式。越来越多的证据表明,RT 通过上调肿瘤相关巨噬细胞(TAMs)和髓系来源的抑制细胞(MDSCs)等细胞,可诱导免疫抑制转移。MDSCs 通过强大的免疫抑制机制抑制抗肿瘤免疫,并有潜力成为癌症预后和治疗的重要工具。MDSCs 与许多不同的途径相互作用,使肿瘤组织脱敏并与肿瘤细胞相互作用,以促进治疗抵抗。RT 诱导的血管损伤触发炎症信号级联反应,并加剧肿瘤微环境(TME)中的缺氧。RT 还可以极大地改变 TME 中的细胞因子和趋化因子信号,以促进 MDSCs 的积累。RT 激活 cGAS-STING 胞质 DNA 感应途径通过 CCR2 介导的机制招募 MDSCs,抑制 I 型干扰素的产生,并阻碍 TME 中的抗肿瘤活性和免疫监视。缺氧诱导因子-1 和血管内皮生长因子的上调将 MDSCs 募集到 TME。募集后,MDSCs 通过释放活性氧和上调诱导型一氧化氮合酶表达来增加一氧化氮的产生,从而抑制细胞毒性活性,促进免疫抑制。MDSCs 亚群中精氨酸酶-1 的过表达会降解 L-精氨酸并下调 CD3ζ,抑制 T 细胞受体反应性。这篇综述解释了 RT 如何通过激活 TME 中的免疫抑制 MDSCs 促进肿瘤耐药,并讨论了目前针对 MDSCs 的研究,这可能成为未来有前途的临床治疗策略。
Int J Radiat Oncol Biol Phys. 2024-5-1
Front Cell Infect Microbiol. 2021
Int Immunopharmacol. 2022-9
MedComm (2020). 2024-11-3
Biomater Res. 2024-9-25
Cancer Res Treat. 2025-1
Front Cell Dev Biol. 2022-8-17
Radiat Oncol. 2022-4-1
Cancers (Basel). 2022-2-27
Cell Mol Immunol. 2021-9
Immunity. 2021-5-11