文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫治疗应用中的无机纳米颗粒功能化策略

Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications.

作者信息

Mao Wei, Yoo Hyuk Sang

机构信息

Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea.

Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.

出版信息

Biomater Res. 2024 Sep 25;28:0086. doi: 10.34133/bmr.0086. eCollection 2024.


DOI:10.34133/bmr.0086
PMID:39323561
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11423863/
Abstract

Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.

摘要

由于能够设计功能性纳米载体,在提高治疗效果的同时将副作用降至最低,纳米技术在抗癌治疗中的应用越来越广泛。无机纳米颗粒(INPs)是一类普遍存在的纳米载体,可定制用于广泛的抗癌应用,包括治疗诊断、成像、靶向药物递送和治疗,因为它们具有优异的生物相容性、独特的光学性质,以及通过多种表面功能化策略进行修饰的能力。在过去几十年中,INPs在这一新兴免疫治疗领域的高度适应性使其成为肿瘤免疫治疗和联合免疫治疗的良好载体选择。肿瘤免疫治疗需要将免疫调节治疗药物靶向递送至肿瘤部位或免疫器官,以激活免疫细胞并诱导肿瘤特异性免疫反应,同时调节免疫稳态,特别是改变肿瘤免疫抑制微环境。本综述探讨了各种INP设计和制剂,以及它们在肿瘤免疫治疗和联合免疫治疗中的应用。我们还详细介绍了利用表面工程策略创建多功能INPs的方法。所生成的INPs展示了刺激和增强免疫反应、特异性靶向以及调节癌细胞、免疫细胞及其驻留微环境的能力,有时还具备成像和追踪能力,这暗示了它们在多任务免疫治疗中的潜力。此外,我们还讨论了基于INP的联合免疫治疗在肿瘤治疗中的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/847bde9d29b2/bmr.0086.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/10c6c51d0ff4/bmr.0086.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/539df03f5cfe/bmr.0086.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/31929b7a351f/bmr.0086.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/847bde9d29b2/bmr.0086.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/10c6c51d0ff4/bmr.0086.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/539df03f5cfe/bmr.0086.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/31929b7a351f/bmr.0086.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7d/11423863/847bde9d29b2/bmr.0086.fig.004.jpg

相似文献

[1]
Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications.

Biomater Res. 2024-9-25

[2]
Inorganic nanoparticle-integrated mesenchymal stem cells: A potential biological agent for multifaceted applications.

MedComm (2020). 2023-7-31

[3]
Inorganic nanoparticle-cored dendrimers for biomedical applications: A review.

Heliyon. 2024-4-16

[4]
Exploring naturally occurring ivy nanoparticles as an alternative biomaterial.

Acta Biomater. 2015-10

[5]
Advances in Cancer Nanovaccines: Harnessing Nanotechnology for Broadening Cancer Immune Response.

ChemMedChem. 2023-7-3

[6]
Challenges and advances for glioma therapy based on inorganic nanoparticles.

Mater Today Bio. 2023-6-1

[7]
Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.

Acc Chem Res. 2020-9-15

[8]
Application of nanotechnology in circumventing immunotolerance.

Pharmazie. 2020-10-1

[9]
Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?

Acta Biomater. 2021-4-15

[10]
Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy.

J Control Release. 2024-1

引用本文的文献

[1]
Smart Biomaterials for Delivery of Drugs and Cells.

Biomater Res. 2025-7-31

[2]
Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor.

Biomater Res. 2025-3-19

[3]
Inorganic Nanomaterials Meet the Immune System: An Intricate Balance.

Adv Healthc Mater. 2025-4

[4]
Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions.

Pharmaceuticals (Basel). 2025-2-14

本文引用的文献

[1]
Construction of Hierarchically Biomimetic Iron Oxide Nanosystems for Macrophage Repolarization-Promoted Immune Checkpoint Blockade of Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2024-7-17

[2]
Inhalable metal-organic framework-mediated cuproptosis combined with PD-L1 checkpoint blockade for lung metastasis synergistic immunotherapy.

Acta Pharm Sin B. 2024-5

[3]
Gemcitabine Modulates HLA-I Regulation to Improve Tumor Antigen Presentation by Pancreatic Cancer Cells.

Int J Mol Sci. 2024-3-11

[4]
Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors.

Small. 2024-5

[5]
Biocompatible and bioactivable terpolymer-lipid-MnO Nanoparticle-based MRI contrast agent for improving tumor detection and delineation.

Mater Today Bio. 2024-1-17

[6]
Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy.

Biomedicines. 2024-1-15

[7]
Risedronate-functionalized manganese-hydroxyapatite amorphous particles: A potent adjuvant for subunit vaccines and cancer immunotherapy.

J Control Release. 2024-3

[8]
Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership.

Int J Radiat Oncol Biol Phys. 2024-5-1

[9]
Multifunctional Tumor-Targeting Carbon Dots for Tumor Microenvironment Activated Ferroptosis and Immunotherapy in Cancer Treatment.

ACS Appl Mater Interfaces. 2023-11-28

[10]
Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy.

Nat Cancer. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索