Suppr超能文献

TS-GCN:一种新型的结合了 Transformer 和 GCN 的肿瘤分割方法。

TS-GCN: A novel tumor segmentation method integrating transformer and GCN.

机构信息

The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.

Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.

出版信息

Math Biosci Eng. 2023 Sep 21;20(10):18173-18190. doi: 10.3934/mbe.2023807.

Abstract

As one of the critical branches of medical image processing, the task of segmentation of breast cancer tumors is of great importance for planning surgical interventions, radiotherapy and chemotherapy. Breast cancer tumor segmentation faces several challenges, including the inherent complexity and heterogeneity of breast tissue, the presence of various imaging artifacts and noise in medical images, low contrast between the tumor region and healthy tissue, and inconsistent size of the tumor region. Furthermore, the existing segmentation methods may not fully capture the rich spatial and contextual information in small-sized regions in breast images, leading to suboptimal performance. In this paper, we propose a novel breast tumor segmentation method, called the transformer and graph convolutional neural (TS-GCN) network, for medical imaging analysis. Specifically, we designed a feature aggregation network to fuse the features extracted from the transformer, GCN and convolutional neural network (CNN) networks. The CNN extract network is designed for the image's local deep feature, and the transformer and GCN networks can better capture the spatial and context dependencies among pixels in images. By leveraging the strengths of three feature extraction networks, our method achieved superior segmentation performance on the BUSI dataset and dataset B. The TS-GCN showed the best performance on several indexes, with Acc of 0.9373, Dice of 0.9058, IoU of 0.7634, F1 score of 0.9338, and AUC of 0.9692, which outperforms other state-of-the-art methods. The research of this segmentation method provides a promising future for medical image analysis and diagnosis of other diseases.

摘要

作为医学图像处理的一个重要分支,乳腺癌肿瘤的分割对于手术干预、放疗和化疗的规划具有重要意义。乳腺癌肿瘤分割面临着几个挑战,包括乳腺组织固有的复杂性和异质性、医学图像中存在各种成像伪影和噪声、肿瘤区域与健康组织之间对比度低、肿瘤区域大小不一致。此外,现有的分割方法可能无法充分捕捉乳腺图像中小区域丰富的空间和上下文信息,导致性能不佳。在本文中,我们提出了一种新的医学成像分析方法,称为 Transformer 和图卷积神经网络(TS-GCN)网络。具体来说,我们设计了一个特征聚合网络,以融合从 Transformer、GCN 和卷积神经网络(CNN)网络中提取的特征。CNN 提取网络用于图像的局部深度特征,而 Transformer 和 GCN 网络可以更好地捕捉图像中像素之间的空间和上下文依赖关系。通过利用三个特征提取网络的优势,我们的方法在 BUSI 数据集和数据集 B 上实现了卓越的分割性能。TS-GCN 在几个指标上表现最佳,Acc 为 0.9373、Dice 为 0.9058、IoU 为 0.7634、F1 分数为 0.9338 和 AUC 为 0.9692,优于其他最先进的方法。这种分割方法的研究为医学图像分析和其他疾病的诊断提供了广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验