Suppr超能文献

P-TransUNet:一种用于医学图像分割的改进并行网络。

P-TransUNet: an improved parallel network for medical image segmentation.

机构信息

The State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China.

出版信息

BMC Bioinformatics. 2023 Jul 18;24(1):285. doi: 10.1186/s12859-023-05409-7.

Abstract

Deep learning-based medical image segmentation has made great progress over the past decades. Scholars have proposed many novel transformer-based segmentation networks to solve the problems of building long-range dependencies and global context connections in convolutional neural networks (CNNs). However, these methods usually replace the CNN-based blocks with improved transformer-based structures, which leads to the lack of local feature extraction ability, and these structures require a huge number of data for training. Moreover, those methods did not pay attention to edge information, which is essential in medical image segmentation. To address these problems, we proposed a new network structure, called P-TransUNet. This network structure combines the designed efficient P-Transformer and the fusion module, which extract distance-related long-range dependencies and local information respectively and produce the fused features. Besides, we introduced edge loss into training to focus the attention of the network on the edge of the lesion area to improve segmentation performance. Extensive experiments across four tasks of medical image segmentation demonstrated the effectiveness of P-TransUNet, and showed that our network outperforms other state-of-the-art methods.

摘要

基于深度学习的医学图像分割在过去几十年中取得了巨大的进展。学者们提出了许多新的基于变换的分割网络,以解决卷积神经网络(CNN)中构建长程依赖关系和全局上下文连接的问题。然而,这些方法通常用改进的基于变换的结构替换基于 CNN 的块,这导致了缺乏局部特征提取能力,并且这些结构需要大量数据进行训练。此外,这些方法没有关注边缘信息,而边缘信息在医学图像分割中是必不可少的。为了解决这些问题,我们提出了一种新的网络结构,称为 P-TransUNet。该网络结构结合了设计的高效 P-Transformer 和融合模块,分别提取距离相关的长程依赖关系和局部信息,并生成融合特征。此外,我们在训练中引入了边缘损失,以使网络的注意力集中在病变区域的边缘,从而提高分割性能。在四个医学图像分割任务上的广泛实验表明了 P-TransUNet 的有效性,表明我们的网络优于其他最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/10354938/d40eb485b1af/12859_2023_5409_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验