Suppr超能文献

优化疫苗不良事件报告系统中的信号管理:使用体征、症状和自然语言处理对 COVID-19 疫苗进行概念验证

Optimizing Signal Management in a Vaccine Adverse Event Reporting System: A Proof-of-Concept with COVID-19 Vaccines Using Signs, Symptoms, and Natural Language Processing.

机构信息

Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.

Global Safety, GSK, Brentford, UK.

出版信息

Drug Saf. 2024 Feb;47(2):173-182. doi: 10.1007/s40264-023-01381-6. Epub 2023 Dec 7.

Abstract

INTRODUCTION

The Vaccine Adverse Event Reporting System (VAERS) has already been challenged by an extreme increase in the number of individual case safety reports (ICSRs) after the market introduction of coronavirus disease 2019 (COVID-19) vaccines. Evidence from scientific literature suggests that when there is an extreme increase in the number of ICSRs recorded in spontaneous reporting databases (such as the VAERS), an accompanying increase in the number of disproportionality signals (sometimes referred to as 'statistical alerts') generated is expected.

OBJECTIVES

The objective of this study was to develop a natural language processing (NLP)-based approach to optimize signal management by excluding disproportionality signals related to listed adverse events following immunization (AEFIs). COVID-19 vaccines were used as a proof-of-concept.

METHODS

The VAERS was used as a data source, and the Finding Associated Concepts with Text Analysis (FACTA+) was used to extract signs and symptoms of listed AEFIs from MEDLINE for COVID-19 vaccines. Disproportionality analyses were conducted according to guidelines and recommendations provided by the US Centers for Disease Control and Prevention. By using signs and symptoms of listed AEFIs, we computed the proportion of disproportionality signals dismissed for COVID-19 vaccines using this approach. Nine NLP techniques, including Generative Pre-Trained Transformer 3.5 (GPT-3.5), were used to automatically retrieve Medical Dictionary for Regulatory Activities Preferred Terms (MedDRA PTs) from signs and symptoms extracted from FACTA+.

RESULTS

Overall, 17% of disproportionality signals for COVID-19 vaccines were dismissed as they reported signs and symptoms of listed AEFIs. Eight of nine NLP techniques used to automatically retrieve MedDRA PTs from signs and symptoms extracted from FACTA+ showed suboptimal performance. GPT-3.5 achieved an accuracy of 78% in correctly assigning MedDRA PTs.

CONCLUSION

Our approach reduced the need for manual exclusion of disproportionality signals related to listed AEFIs and may lead to better optimization of time and resources in signal management.

摘要

简介

在 2019 年冠状病毒病(COVID-19)疫苗上市后,疫苗不良事件报告系统(VAERS)收到的个体病例安全报告(ICSR)数量呈极端增长,这对其提出了挑战。科学文献中的证据表明,当自发报告数据库(如 VAERS)中记录的 ICSR 数量呈极端增长时,预计会生成更多的不成比例信号(有时称为“统计警报”)。

目的

本研究旨在开发一种基于自然语言处理(NLP)的方法,通过排除与上市后免疫不良事件(AEFI)相关的不成比例信号来优化信号管理。使用 COVID-19 疫苗作为概念验证。

方法

VAERS 被用作数据源,使用文本分析中的发现相关概念(FACTA+)从 MEDLINE 中提取 COVID-19 疫苗的上市后 AEFI 的症状和体征。根据美国疾病控制与预防中心提供的指南和建议进行了不成比例分析。使用上市后 AEFI 的症状和体征,我们计算了使用该方法排除 COVID-19 疫苗不成比例信号的比例。使用了九种 NLP 技术,包括生成式预训练转换器 3.5(GPT-3.5),从 FACTA+中提取的症状和体征中自动检索监管活动医学词典首选术语(MedDRA PT)。

结果

总体而言,17%的 COVID-19 疫苗的不成比例信号被排除,因为它们报告了上市后 AEFI 的症状和体征。从 FACTA+中提取的症状和体征中自动检索 MedDRA PT 的九种 NLP 技术中有八种显示出次优性能。GPT-3.5 在正确分配 MedDRA PT 方面的准确率为 78%。

结论

我们的方法减少了对与上市后 AEFI 相关的不成比例信号的手动排除的需求,并可能导致更好地优化信号管理中的时间和资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b907/10821983/27a1ce00cacd/40264_2023_1381_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验