Suppr超能文献

人工智能:在药物警戒信号管理中的应用

Artificial Intelligence: Applications in Pharmacovigilance Signal Management.

作者信息

Warner Jeffrey, Prada Jardim Anaclara, Albera Claudia

机构信息

Eli Lilly and Company, Indianapolis, IN, USA.

出版信息

Pharmaceut Med. 2025 Apr 21. doi: 10.1007/s40290-025-00561-2.

Abstract

Pharmacovigilance is the science of collection, detection, and assessment of adverse events associated with pharmaceutical products for the ongoing monitoring and understanding of those products' safety profiles. Part of this process, signal management, encompasses the activities of signal detection, signal validation/confirmation, signal evaluation, and ultimately, final assessment as to whether a safety signal constitutes a new causal adverse drug reaction. Artificial intelligence is a group of technologies including machine learning and natural language processing that are revolutionizing multiple industries through intelligent automation. Here, we present a critical evaluation of studies leveraging artificial intelligence in signal management to characterize the benefits and limitations of the technology, the level of transparency, and our perspective on best practices for the future. To this end, PubMed and Embase were searched cumulatively for terms pertaining to signal management and artificial intelligence, machine learning, or natural language processing. Information pertaining to the artificial intelligence model used, hyperparameter settings, training/testing data, performance, feature analysis, and more was extracted from included articles. Common signal detection methods included k-means, random forest, and gradient boosting machine. Machine learning algorithms generally outperformed traditional frequentist or Bayesian measures of disproportionality per various metrics, showing the potential utility of advanced machine learning technologies in signal detection. In signal validation and evaluation, natural language processing was typically applied. Overall, methodological transparency was mixed and only some studies leveraged "gold standard" publicly available positive and negative control datasets. Overall, innovation in pharmacovigilance signal management is being driven by machine learning and natural language processing models, particularly in signal detection, in part because of high-performing bagging methods such as random forest and gradient boosting machine. These technologies may be well poised to accelerate progress in this field when used transparently and ethically. Future research is needed to assess the applicability of these techniques across various therapeutic areas and drug classes in the broader pharmaceutical industry.

摘要

药物警戒是一门关于收集、检测和评估与药品相关的不良事件的科学,旨在持续监测和了解这些药品的安全性概况。信号管理是这一过程的一部分,它涵盖信号检测、信号验证/确认、信号评估等活动,最终要对一个安全信号是否构成一种新的因果性药物不良反应进行最终评估。人工智能是包括机器学习和自然语言处理在内的一组技术,正通过智能自动化彻底改变多个行业。在此,我们对利用人工智能进行信号管理的研究进行批判性评估,以描述该技术的益处和局限性、透明度水平以及我们对未来最佳实践的看法。为此,我们累计在PubMed和Embase数据库中搜索了与信号管理以及人工智能、机器学习或自然语言处理相关的术语。从纳入的文章中提取了与所使用的人工智能模型、超参数设置、训练/测试数据、性能、特征分析等相关的信息。常见的信号检测方法包括k均值、随机森林和梯度提升机。根据各种指标,机器学习算法通常优于传统的频率论或贝叶斯不均衡性测量方法,显示出先进机器学习技术在信号检测中的潜在效用。在信号验证和评估中,通常应用自然语言处理技术。总体而言,方法的透明度参差不齐,只有一些研究利用了“金标准”的公开可用的阳性和阴性对照数据集。总体而言,药物警戒信号管理的创新正由机器学习和自然语言处理模型推动,特别是在信号检测方面,部分原因是诸如随机森林和梯度提升机等高性能装袋方法。当以透明和符合道德的方式使用这些技术时,它们可能有充分的条件加速该领域的进展。未来需要开展研究,以评估这些技术在更广泛的制药行业中跨各种治疗领域和药物类别的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验