Suppr超能文献

将突变异质性纳入其中,以鉴定在癌症中同义突变富集的基因。

Incorporating mutational heterogeneity to identify genes that are enriched for synonymous mutations in cancer.

机构信息

Huck Institute of the Life Sciences, Pennsylvania State University, University Park, State College, PA, 16802, USA.

Moderna, Inc., Cambridge, USA.

出版信息

BMC Bioinformatics. 2023 Dec 7;24(1):462. doi: 10.1186/s12859-023-05521-8.

Abstract

BACKGROUND

Synonymous mutations, which change the DNA sequence but not the encoded protein sequence, can affect protein structure and function, mRNA maturation, and mRNA half-lives. The possibility that synonymous mutations might be enriched in cancer has been explored in several recent studies. However, none of these studies control for all three types of mutational heterogeneity (patient, histology, and gene) that are known to affect the accurate identification of non-synonymous cancer-associated genes. Our goal is to adopt the current standard for non-synonymous mutations in an investigation of synonymous mutations.

RESULTS

Here, we create an algorithm, MutSigCVsyn, an adaptation of MutSigCV, to identify cancer-associated genes that are enriched for synonymous mutations based on a non-coding background model that takes into account the mutational heterogeneity across these levels. Using MutSigCVsyn, we first analyzed 2572 cancer whole-genome samples from the Pan-cancer Analysis of Whole Genomes (PCAWG) to identify non-synonymous cancer drivers as a quality control. Indicative of the algorithm accuracy we find that 58.6% of these candidate genes were also found in Cancer Census Gene (CGC) list, and 66.2% were found within the PCAWG cancer driver list. We then applied it to identify 30 putative cancer-associated genes that are enriched for synonymous mutations within the same samples. One of the promising gene candidates is the B cell lymphoma 2 (BCL-2) gene. BCL-2 regulates apoptosis by antagonizing the action of proapoptotic BCL-2 family member proteins. The synonymous mutations in BCL2 are enriched in its anti-apoptotic domain and likely play a role in cancer cell proliferation.

CONCLUSION

Our study introduces MutSigCVsyn, an algorithm that accounts for mutational heterogeneity at patient, histology, and gene levels, to identify cancer-associated genes that are enriched for synonymous mutations using whole genome sequencing data. We identified 30 putative candidate genes that will benefit from future experimental studies on the role of synonymous mutations in cancer biology.

摘要

背景

同义突变改变了 DNA 序列但不改变编码的蛋白质序列,可能影响蛋白质结构和功能、mRNA 成熟和 mRNA 半衰期。最近的几项研究探索了同义突变是否可能在癌症中富集。然而,这些研究都没有控制已知会影响非同义癌症相关基因准确识别的三种突变异质性(患者、组织学和基因)。我们的目标是采用当前非同义突变的标准来研究同义突变。

结果

在这里,我们创建了一个算法 MutSigCVsyn,这是 MutSigCV 的一种改编,用于根据考虑这些水平上突变异质性的非编码背景模型,识别同义突变富集的癌症相关基因。使用 MutSigCVsyn,我们首先分析了来自 Pan-cancer Analysis of Whole Genomes(PCAWG)的 2572 个癌症全基因组样本,以确定非同义癌症驱动基因作为质量控制。表明算法的准确性,我们发现这些候选基因中有 58.6%也在 Cancer Census Gene(CGC)列表中,66.2%在 PCAWG 癌症驱动基因列表中。然后,我们将其应用于同一批样本中识别 30 个可能与癌症相关的同义突变富集基因。有前途的候选基因之一是 B 细胞淋巴瘤 2(BCL-2)基因。BCL-2 通过拮抗促凋亡 BCL-2 家族成员蛋白的作用来调节细胞凋亡。BCL2 中的同义突变在其抗凋亡结构域中富集,可能在癌细胞增殖中发挥作用。

结论

我们的研究介绍了 MutSigCVsyn,这是一种算法,它考虑了患者、组织学和基因水平的突变异质性,使用全基因组测序数据识别同义突变富集的癌症相关基因。我们确定了 30 个潜在的候选基因,它们将受益于未来关于同义突变在癌症生物学中作用的实验研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d4/10704839/1e2e49b71509/12859_2023_5521_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验