Suppr超能文献

基于非结构化相机阵列的半监督图像拼接

Semi-Supervised Image Stitching from Unstructured Camera Arrays.

作者信息

Nghonda Tchinda Erman, Panoff Maximillian Kealoha, Tchuinkou Kwadjo Danielle, Bobda Christophe

机构信息

Department of Electrical and Computer Engineering, The Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611-6200, USA.

出版信息

Sensors (Basel). 2023 Nov 28;23(23):9481. doi: 10.3390/s23239481.

Abstract

Image stitching involves combining multiple images of the same scene captured from different viewpoints into a single image with an expanded field of view. While this technique has various applications in computer vision, traditional methods rely on the successive stitching of image pairs taken from multiple cameras. While this approach is effective for organized camera arrays, it can pose challenges for unstructured ones, especially when handling scene overlaps. This paper presents a deep learning-based approach for stitching images from large unstructured camera sets covering complex scenes. Our method processes images concurrently by using the algorithm to transform data from multiple cameras into a reduced fixed array, thereby minimizing data loss. A customized convolutional neural network then processes these data to produce the final image. By stitching images simultaneously, our method avoids the potential cascading errors seen in sequential pairwise stitching while offering improved time efficiency. In addition, we detail an unsupervised training method for the network utilizing metrics from Generative Adversarial Networks supplemented with supervised learning. Our testing revealed that the proposed approach operates in roughly ∼1/7th the time of many traditional methods on both CPU and GPU platforms, achieving results consistent with established methods.

摘要

图像拼接涉及将从不同视角拍摄的同一场景的多个图像组合成一个具有更广阔视野的单一图像。虽然这项技术在计算机视觉中有多种应用,但传统方法依赖于对从多个相机拍摄的图像对进行逐次拼接。虽然这种方法对于有组织的相机阵列很有效,但对于无结构的相机阵列可能会带来挑战,尤其是在处理场景重叠时。本文提出了一种基于深度学习的方法,用于拼接来自覆盖复杂场景的大型无结构相机集的图像。我们的方法通过使用算法将来自多个相机的数据转换为缩减的固定阵列来并发处理图像,从而最大限度地减少数据丢失。然后,一个定制的卷积神经网络处理这些数据以生成最终图像。通过同时拼接图像,我们的方法避免了在顺序成对拼接中出现的潜在级联错误,同时提高了时间效率。此外,我们详细介绍了一种利用生成对抗网络的指标并辅以监督学习的网络无监督训练方法。我们的测试表明,所提出的方法在CPU和GPU平台上的运行时间约为许多传统方法的1/7,取得了与现有方法一致的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74cc/10708566/5ed358c33636/sensors-23-09481-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验