Suppr超能文献

无监督深度图像拼接:将拼接特征重构为图像。

Unsupervised Deep Image Stitching: Reconstructing Stitched Features to Images.

作者信息

Nie Lang, Lin Chunyu, Liao Kang, Liu Shuaicheng, Zhao Yao

出版信息

IEEE Trans Image Process. 2021;30:6184-6197. doi: 10.1109/TIP.2021.3092828. Epub 2021 Jul 9.

Abstract

Traditional feature-based image stitching technologies rely heavily on feature detection quality, often failing to stitch images with few features or low resolution. The learning-based image stitching solutions are rarely studied due to the lack of labeled data, making the supervised methods unreliable. To address the above limitations, we propose an unsupervised deep image stitching framework consisting of two stages: unsupervised coarse image alignment and unsupervised image reconstruction. In the first stage, we design an ablation-based loss to constrain an unsupervised homography network, which is more suitable for large-baseline scenes. Moreover, a transformer layer is introduced to warp the input images in the stitching-domain space. In the second stage, motivated by the insight that the misalignments in pixel-level can be eliminated to a certain extent in feature-level, we design an unsupervised image reconstruction network to eliminate the artifacts from features to pixels. Specifically, the reconstruction network can be implemented by a low-resolution deformation branch and a high-resolution refined branch, learning the deformation rules of image stitching and enhancing the resolution simultaneously. To establish an evaluation benchmark and train the learning framework, a comprehensive real-world image dataset for unsupervised deep image stitching is presented and released. Extensive experiments well demonstrate the superiority of our method over other state-of-the-art solutions. Even compared with the supervised solutions, our image stitching quality is still preferred by users.

摘要

传统的基于特征的图像拼接技术严重依赖特征检测质量,常常无法拼接特征较少或分辨率较低的图像。由于缺乏标注数据,基于学习的图像拼接解决方案很少被研究,这使得监督方法不可靠。为了解决上述局限性,我们提出了一个无监督深度图像拼接框架,它由两个阶段组成:无监督粗略图像对齐和无监督图像重建。在第一阶段,我们设计了一种基于消融的损失来约束一个无监督单应性网络,该网络更适用于大基线场景。此外,引入了一个Transformer层,以便在拼接域空间中对输入图像进行扭曲。在第二阶段,基于在特征级别可以在一定程度上消除像素级别的错位这一见解,我们设计了一个无监督图像重建网络,以消除从特征到像素的伪影。具体来说,重建网络可以由一个低分辨率变形分支和一个高分辨率细化分支实现,学习图像拼接的变形规则并同时提高分辨率。为了建立一个评估基准并训练该学习框架,我们展示并发布了一个用于无监督深度图像拼接的综合真实世界图像数据集。大量实验充分证明了我们的方法优于其他现有最先进的解决方案。即使与监督解决方案相比,我们的图像拼接质量仍然更受用户青睐。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验