Suppr超能文献

家用阻塞性睡眠呼吸暂停检测设备的研究进展:一项综合性研究。

Advancements in Home-Based Devices for Detecting Obstructive Sleep Apnea: A Comprehensive Study.

机构信息

Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Mexico City 14380, Mexico.

Faculty of Engineering, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico.

出版信息

Sensors (Basel). 2023 Nov 30;23(23):9512. doi: 10.3390/s23239512.

Abstract

Obstructive Sleep Apnea (OSA) is a respiratory disorder characterized by frequent breathing pauses during sleep. The apnea-hypopnea index is a measure used to assess the severity of sleep apnea and the hourly rate of respiratory events. Despite numerous commercial devices available for apnea diagnosis and early detection, accessibility remains challenging for the general population, leading to lengthy wait times in sleep clinics. Consequently, research on monitoring and predicting OSA has surged. This comprehensive paper reviews devices, emphasizing distinctions among representative apnea devices and technologies for home detection of OSA. The collected articles are analyzed to present a clear discussion. Each article is evaluated according to diagnostic elements, the implemented automation level, and the derived level of evidence and quality rating. The findings indicate that the critical variables for monitoring sleep behavior include oxygen saturation (oximetry), body position, respiratory effort, and respiratory flow. Also, the prevalent trend is the development of level IV devices, measuring one or two signals and supported by prediction software. Noteworthy methods showcasing optimal results involve neural networks, deep learning, and regression modeling, achieving an accuracy of approximately 99%.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种以睡眠期间频繁呼吸暂停为特征的呼吸障碍。呼吸暂停低通气指数是一种用于评估睡眠呼吸暂停严重程度和呼吸事件每小时发生率的指标。尽管有许多商业设备可用于睡眠呼吸暂停的诊断和早期检测,但普通人群的可及性仍然具有挑战性,导致睡眠诊所的候诊时间很长。因此,对睡眠呼吸暂停监测和预测的研究大量涌现。本文全面回顾了这些设备,强调了代表性睡眠呼吸暂停设备和用于家庭检测 OSA 的技术之间的区别。对收集到的文章进行分析,以提出清晰的讨论。根据诊断要素、实施的自动化水平以及得出的证据水平和质量评分,对每篇文章进行评估。研究结果表明,监测睡眠行为的关键变量包括氧饱和度(血氧仪)、体位、呼吸努力和呼吸流量。此外,目前的发展趋势是开发四级设备,测量一个或两个信号,并辅以预测软件。表现出最佳结果的显著方法包括神经网络、深度学习和回归建模,其准确率约为 99%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f402/10708697/d3f4c4f9fc90/sensors-23-09512-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验