Suppr超能文献

人工智能分析下颌运动可准确检测阻塞性睡眠呼吸暂停患者的发作性睡眠磨牙症:一项初步研究。

Artificial Intelligence Analysis of Mandibular Movements Enables Accurate Detection of Phasic Sleep Bruxism in OSA Patients: A Pilot Study.

作者信息

Martinot Jean-Benoit, Le-Dong Nhat-Nam, Cuthbert Valérie, Denison Stéphane, Gozal David, Lavigne Gilles, Pépin Jean-Louis

机构信息

Sleep Laboratory, CHU Université Catholique de Louvain (UCL) Namur Site Sainte-Elisabeth, Namur, 5000, Belgium.

Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, Brussels, 1200, Belgium.

出版信息

Nat Sci Sleep. 2021 Aug 23;13:1449-1459. doi: 10.2147/NSS.S320664. eCollection 2021.

Abstract

PURPOSE

Sleep bruxism (SBx) activity is classically identified by capturing masseter and/or temporalis masticatory muscles electromyographic activity (EMG-MMA) during in-laboratory polysomnography (PSG). We aimed to identify stereotypical mandibular jaw movements (MJM) in patients with SBx and to develop rhythmic masticatory muscles activities (RMMA) automatic detection using an artificial intelligence (AI) based approach.

PATIENTS AND METHODS

This was a prospective, observational study of 67 suspected obstructive sleep apnea (OSA) patients in whom PSG with masseter EMG was performed with simultaneous MJM recordings. The system used to collect MJM consisted of a small hardware device attached on the chin that communicates to a cloud-based infrastructure. An extreme gradient boosting (XGB) multiclass classifier was trained on 79,650 10-second epochs of MJM data from the 39 subjects with a history of SBx targeting 3 labels: RMMA episodes (n=1072), micro-arousals (n=1311), and MJM occurring at the breathing frequency (n=77,267).

RESULTS

Validated on unseen data from 28 patients, the model showed a very good epoch-by-epoch agreement (Kappa = 0.799) and balanced accuracy of 86.6% was found for the MJM events when using RMMA standards. The RMMA episodes were detected with a sensitivity of 84.3%. Class-wise receiver operating characteristic (ROC) curve analysis confirmed the well-balanced performance of the classifier for RMMA (ROC area under the curve: 0.98, 95% confidence interval [CI] 0.97-0.99). There was good agreement between the MJM analytic model and manual EMG signal scoring of RMMA (median bias -0.80 events/h, 95% CI -9.77 to 2.85).

CONCLUSION

SBx can be reliably identified, quantified, and characterized with MJM when subjected to automated analysis supported by AI technology.

摘要

目的

睡眠磨牙症(SBx)的活动传统上是通过在实验室多导睡眠图(PSG)期间捕捉咬肌和/或颞肌咀嚼肌肌电图活动(EMG-MMA)来识别的。我们旨在识别SBx患者的典型下颌颌骨运动(MJM),并使用基于人工智能(AI)的方法开发节律性咀嚼肌活动(RMMA)自动检测方法。

患者与方法

这是一项对67例疑似阻塞性睡眠呼吸暂停(OSA)患者的前瞻性观察性研究,对这些患者进行了伴有咬肌肌电图的PSG检查,并同时记录MJM。用于收集MJM的系统由一个附着在下巴上的小型硬件设备组成,该设备与基于云的基础设施通信。使用来自39例有SBx病史的受试者的79650个10秒时间段的MJM数据,训练一个极端梯度提升(XGB)多类分类器,目标是3个标签:RMMA发作(n = 1072)、微觉醒(n = 1311)以及以呼吸频率发生的MJM(n = 77267)。

结果

在来自28例患者的未见过的数据上进行验证时,该模型显示出非常好的逐段一致性(Kappa = 0.799),并且在使用RMMA标准时,MJM事件的平衡准确率为86.6%。RMMA发作的检测灵敏度为84.3%。类别特异性受试者操作特征(ROC)曲线分析证实了分类器对RMMA的性能良好平衡(曲线下面积:0.98,95%置信区间[CI] 0.97 - 0.99)。MJM分析模型与RMMA的手动肌电图信号评分之间有良好的一致性(中位偏差 -0.80次事件/小时,95% CI -9.77至2.85)。

结论

当在人工智能技术支持的自动分析下,SBx可以通过MJM可靠地识别、量化和表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/649d/8397703/6581a9479e55/NSS-13-1449-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验