Zhang Yuming, Li Dongdong, Li Junzhi, Li Yilin, Wang Lili, Xu Hao, Han Wei
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China; Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, China.
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
J Colloid Interface Sci. 2024 Mar;657:550-558. doi: 10.1016/j.jcis.2023.11.175. Epub 2023 Nov 30.
Magnesium-based battery system has emerged as the potential candidate to beyond Li-ion battery system due to the numerous advantageous of magnesium anode, such as natural abundance, high capacity and dendrites free. However, the selection of cathode materials and the intercalation of magnesium-ions in the cathode host material remains a challenge due to the strong interaction of highly polar divalent magnesium ions with the cathode material, making the diffusion of magnesium ions relatively difficult. Herein, the flexible TiVCT MXene film was developed via a facile and economical approach. As the cathode host material for magnesium-ion storage, the freestanding TiVCT MXene film displays a high specific capacity of 111 and 135 mAh g at a current density of 0.05 A g for magnesium-ion batteries (MIB) and Mg/Li hybrid batteries (MLHB). Furthermore, a long-term cycling stability over 1000 cycles was demonstrated and a detailed investigation of the unique long activation phenomenon of MXene films during cycling. More importantly, the reaction mechanism of magnesium-ion storage was validated, i.e., the MXene interlayer spacing variation with the reversible Mg diffusion behavior. This work reveals the magnesium storage mechanism of MXene materials and provides a new pathway for high-performance storage of magnesium-ion cathode materials.
镁基电池系统由于镁负极具有诸多优势,如储量丰富、容量高且无枝晶等,已成为超越锂离子电池系统的潜在候选者。然而,由于高极性二价镁离子与阴极材料之间的强相互作用,使得阴极材料的选择以及镁离子在阴极主体材料中的嵌入仍然是一个挑战,这导致镁离子的扩散相对困难。在此,通过一种简便且经济的方法制备了柔性TiVCT MXene薄膜。作为镁离子存储的阴极主体材料,独立的TiVCT MXene薄膜在镁离子电池(MIB)和镁/锂混合电池(MLHB)中,在0.05 A g的电流密度下展现出111和135 mAh g的高比容量。此外,还展示了超过1000次循环的长期循环稳定性,并对MXene薄膜在循环过程中独特的长激活现象进行了详细研究。更重要的是,验证了镁离子存储的反应机制,即MXene层间距随镁可逆扩散行为的变化。这项工作揭示了MXene材料的镁存储机制,并为高性能镁离子阴极材料的存储提供了一条新途径。