Suppr超能文献

融合建模:结合临床和影像数据以推进心脏护理。

Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care.

机构信息

Department of Radiology and Imaging Sciences, Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, (M.v.A., A.C.R., C.N.D.C.), Emory University, Atlanta, GA.

Machine Intelligence in Medicine and Imaging (MI-2) Lab, Mayo Clinic, AZ (A.T., I.B.).

出版信息

Circ Cardiovasc Imaging. 2023 Dec;16(12):e014533. doi: 10.1161/CIRCIMAGING.122.014533. Epub 2023 Dec 11.

Abstract

In addition to the traditional clinical risk factors, an increasing amount of imaging biomarkers have shown value for cardiovascular risk prediction. Clinical and imaging data are captured from a variety of data sources during multiple patient encounters and are often analyzed independently. Initial studies showed that fusion of both clinical and imaging features results in superior prognostic performance compared with traditional scores. There are different approaches to fusion modeling, combining multiple data resources to optimize predictions, each with its own advantages and disadvantages. However, manual extraction of clinical and imaging data is time and labor intensive and often not feasible in clinical practice. An automated approach for clinical and imaging data extraction is highly desirable. Convolutional neural networks and natural language processing can be utilized for the extraction of electronic medical record data, imaging studies, and free-text data. This review outlines the current status of cardiovascular risk prediction and fusion modeling; and in addition gives an overview of different artificial intelligence approaches to automatically extract data from images and electronic medical records for this purpose.

摘要

除了传统的临床危险因素外,越来越多的影像学生物标志物已被证明对心血管风险预测具有价值。临床和影像学数据在多次患者就诊时从各种数据源中获取,并且通常独立进行分析。初步研究表明,与传统评分相比,融合临床和影像学特征可带来更优的预后性能。融合建模有不同的方法,结合多种数据资源以优化预测,每种方法都有其自身的优缺点。但是,手动提取临床和影像学数据既耗时又费力,在临床实践中往往不可行。因此,非常需要一种自动化的临床和影像学数据提取方法。卷积神经网络和自然语言处理可用于提取电子病历数据、影像学研究和自由文本数据。本综述概述了心血管风险预测和融合建模的现状;此外,还概述了不同的人工智能方法,用于自动从图像和电子病历中提取数据,以实现这一目的。

相似文献

1
Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care.
Circ Cardiovasc Imaging. 2023 Dec;16(12):e014533. doi: 10.1161/CIRCIMAGING.122.014533. Epub 2023 Dec 11.
3
Facilitating clinical research through automation: Combining optical character recognition with natural language processing.
Clin Trials. 2022 Oct;19(5):504-511. doi: 10.1177/17407745221093621. Epub 2022 May 24.
4
Artificial intelligence-based methods for fusion of electronic health records and imaging data.
Sci Rep. 2022 Oct 26;12(1):17981. doi: 10.1038/s41598-022-22514-4.
5
Artificial intelligence approaches using natural language processing to advance EHR-based clinical research.
J Allergy Clin Immunol. 2020 Feb;145(2):463-469. doi: 10.1016/j.jaci.2019.12.897. Epub 2019 Dec 26.
6
Enhancing Thyroid Pathology With Artificial Intelligence: Automated Data Extraction From Electronic Health Reports Using RUBY.
JCO Clin Cancer Inform. 2024 Dec;8:e2300263. doi: 10.1200/CCI.23.00263. Epub 2024 Dec 10.
7
Predicting patient acuity from electronic patient records.
J Biomed Inform. 2014 Oct;51:35-40. doi: 10.1016/j.jbi.2014.04.001. Epub 2014 Apr 12.
8
Artificial Intelligence in Medical Practice: The Question to the Answer?
Am J Med. 2018 Feb;131(2):129-133. doi: 10.1016/j.amjmed.2017.10.035. Epub 2017 Nov 7.
9
Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology.
Transl Vis Sci Technol. 2020 Feb 27;9(2):13. doi: 10.1167/tvst.9.2.13.
10
How Cognitive Machines Can Augment Medical Imaging.
AJR Am J Roentgenol. 2019 Jan;212(1):9-14. doi: 10.2214/AJR.18.19914. Epub 2018 Nov 13.

引用本文的文献

本文引用的文献

1
Multimodal learning with graphs.
Nat Mach Intell. 2023 Apr;5(4):340-350. doi: 10.1038/s42256-023-00624-6. Epub 2023 Apr 3.
3
AI in drug discovery and its clinical relevance.
Heliyon. 2023 Jul;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575. Epub 2023 Jun 26.
5
Building a knowledge graph to enable precision medicine.
Sci Data. 2023 Feb 2;10(1):67. doi: 10.1038/s41597-023-01960-3.
8
Use of Multi-Modal Data and Machine Learning to Improve Cardiovascular Disease Care.
Front Cardiovasc Med. 2022 Apr 27;9:840262. doi: 10.3389/fcvm.2022.840262. eCollection 2022.
9
Automated coronary artery calcium scoring using nested U-Net and focal loss.
Comput Struct Biotechnol J. 2022 Mar 26;20:1681-1690. doi: 10.1016/j.csbj.2022.03.025. eCollection 2022.
10
Radiomics in medical imaging: pitfalls and challenges in clinical management.
Jpn J Radiol. 2022 Sep;40(9):919-929. doi: 10.1007/s11604-022-01271-4. Epub 2022 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验