Mastrodicasa Domenico, van Assen Marly
Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98105, United States.
Translational Lab for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, United States.
BJR Open. 2025 Jun 6;7(1):tzaf015. doi: 10.1093/bjro/tzaf015. eCollection 2025 Jan.
Artificial intelligence (AI) has made significant strides in cardiac imaging, offering advancements in image acquisition, risk prediction, and workflow automation. However, its readiness for widespread clinical adoption remains debated. This review explores both sides of the argument across key domains. It discusses the advantages and challenges of AI for cardiac imaging regarding pre-and post-processing, risk-stratification and prognostication, workflow augmentation, regulatory and ethical frameworks, and cost-effectiveness of AI tools. It will discuss the diagnostic accuracy shown by AI for automated measurements, improved image quality and workflow efficiency with AI-driven worklist prioritization. The potential of personalized care using AI-based prognostic models. It discusses regulatory frameworks for approving AI tools, while ethical frameworks to ensure safe and ethical use of AI are being implemented, simultaneously reimbursement is becoming available, signalling growing trust in their safety and efficacy. It also addresses the challenges AI has yet to overcome, such as the lack of generalizability across diverse populations, limited availability of outcome data and cost-efficacy studies. Despite progress, regulatory and ethical frameworks still struggle to keep pace with AI's rapid evolution, raising concerns about accountability, patient safety, bias, data privacy, and algorithmic transparency.
人工智能(AI)在心脏成像领域取得了重大进展,在图像采集、风险预测和工作流程自动化方面都有进步。然而,其是否准备好被广泛应用于临床仍存在争议。本综述探讨了这一争论在关键领域的两个方面。它讨论了人工智能在心脏成像的预处理和后处理、风险分层和预后、工作流程增强、监管和伦理框架以及人工智能工具的成本效益等方面的优势和挑战。它将讨论人工智能在自动测量方面显示出的诊断准确性,以及通过人工智能驱动的工作列表优先级提高图像质量和工作流程效率。使用基于人工智能的预后模型进行个性化医疗的潜力。它讨论了批准人工智能工具的监管框架,同时确保安全和符合伦理地使用人工智能的伦理框架正在实施,与此同时,报销也已到位,这表明对其安全性和有效性的信任度在不断提高。它还探讨了人工智能尚未克服的挑战,例如在不同人群中缺乏通用性、结果数据和成本效益研究的可用性有限。尽管取得了进展,但监管和伦理框架仍难以跟上人工智能的快速发展,引发了对问责制、患者安全、偏差、数据隐私和算法透明度的担忧。
Disabil Rehabil Assist Technol. 2025-3-13
J Med Internet Res. 2025-4-4
Semin Hematol. 2025-6-16
J Med Internet Res. 2025-6-23
NPJ Digit Med. 2024-10-3
Eur Heart J. 2024-9-29
Am Heart J Plus. 2022-2-12
J Am Coll Radiol. 2024-10
Radiol Artif Intell. 2024-3
Circ Cardiovasc Imaging. 2023-12