文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于心脏成像的人工智能已准备好广泛应用于临床:支持与反对用于心脏成像的人工智能的辩论

Artificial intelligence for cardiac imaging is ready for widespread clinical use: Pro Con debate AI for cardiac imaging.

作者信息

Mastrodicasa Domenico, van Assen Marly

机构信息

Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98105, United States.

Translational Lab for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, United States.

出版信息

BJR Open. 2025 Jun 6;7(1):tzaf015. doi: 10.1093/bjro/tzaf015. eCollection 2025 Jan.


DOI:10.1093/bjro/tzaf015
PMID:40831572
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12360847/
Abstract

Artificial intelligence (AI) has made significant strides in cardiac imaging, offering advancements in image acquisition, risk prediction, and workflow automation. However, its readiness for widespread clinical adoption remains debated. This review explores both sides of the argument across key domains. It discusses the advantages and challenges of AI for cardiac imaging regarding pre-and post-processing, risk-stratification and prognostication, workflow augmentation, regulatory and ethical frameworks, and cost-effectiveness of AI tools. It will discuss the diagnostic accuracy shown by AI for automated measurements, improved image quality and workflow efficiency with AI-driven worklist prioritization. The potential of personalized care using AI-based prognostic models. It discusses regulatory frameworks for approving AI tools, while ethical frameworks to ensure safe and ethical use of AI are being implemented, simultaneously reimbursement is becoming available, signalling growing trust in their safety and efficacy. It also addresses the challenges AI has yet to overcome, such as the lack of generalizability across diverse populations, limited availability of outcome data and cost-efficacy studies. Despite progress, regulatory and ethical frameworks still struggle to keep pace with AI's rapid evolution, raising concerns about accountability, patient safety, bias, data privacy, and algorithmic transparency.

摘要

人工智能(AI)在心脏成像领域取得了重大进展,在图像采集、风险预测和工作流程自动化方面都有进步。然而,其是否准备好被广泛应用于临床仍存在争议。本综述探讨了这一争论在关键领域的两个方面。它讨论了人工智能在心脏成像的预处理和后处理、风险分层和预后、工作流程增强、监管和伦理框架以及人工智能工具的成本效益等方面的优势和挑战。它将讨论人工智能在自动测量方面显示出的诊断准确性,以及通过人工智能驱动的工作列表优先级提高图像质量和工作流程效率。使用基于人工智能的预后模型进行个性化医疗的潜力。它讨论了批准人工智能工具的监管框架,同时确保安全和符合伦理地使用人工智能的伦理框架正在实施,与此同时,报销也已到位,这表明对其安全性和有效性的信任度在不断提高。它还探讨了人工智能尚未克服的挑战,例如在不同人群中缺乏通用性、结果数据和成本效益研究的可用性有限。尽管取得了进展,但监管和伦理框架仍难以跟上人工智能的快速发展,引发了对问责制、患者安全、偏差、数据隐私和算法透明度的担忧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c01/12360847/00ea5a8bcaaa/tzaf015f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c01/12360847/00ea5a8bcaaa/tzaf015f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c01/12360847/00ea5a8bcaaa/tzaf015f1.jpg

相似文献

[1]
Artificial intelligence for cardiac imaging is ready for widespread clinical use: Pro Con debate AI for cardiac imaging.

BJR Open. 2025-6-6

[2]
AI for IMPACTS Framework for Evaluating the Long-Term Real-World Impacts of AI-Powered Clinician Tools: Systematic Review and Narrative Synthesis.

J Med Internet Res. 2025-2-5

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Enhancing education for children with ASD: a review of evaluation and measurement in AI tool implementation.

Disabil Rehabil Assist Technol. 2025-3-13

[5]
The Role of AI in Nursing Education and Practice: Umbrella Review.

J Med Internet Res. 2025-4-4

[6]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[7]
Perspectives of Health Care Professionals on the Use of AI to Support Clinical Decision-Making in the Management of Multiple Long-Term Conditions: Interview Study.

J Med Internet Res. 2025-7-4

[8]
Artificial Intelligence Applications in Healthcare: A Systematic Review of Their Impact on Nursing Practice and Patient Outcomes.

J Nurs Scholarsh. 2025-8-20

[9]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[10]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

本文引用的文献

[1]
Demographic bias of expert-level vision-language foundation models in medical imaging.

Sci Adv. 2025-3-28

[2]
Cohort profile: AI-driven national Platform for CCTA for clinicaL and industriaL applicatiOns (APOLLO).

BMJ Open. 2024-12-2

[3]
A scoping review of reporting gaps in FDA-approved AI medical devices.

NPJ Digit Med. 2024-10-3

[4]
Atherosclerosis quantification and cardiovascular risk: the ISCHEMIA trial.

Eur Heart J. 2024-9-29

[5]
Underrepresentation of women in cardiac imaging trials: A review.

Am Heart J Plus. 2022-2-12

[6]
Unlocking the Value: Quantifying the Return on Investment of Hospital Artificial Intelligence.

J Am Coll Radiol. 2024-10

[7]
Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data.

Radiol Artif Intell. 2024-3

[8]
How AI should be used in radiology: assessing ambiguity and completeness of intended use statements of commercial AI products.

Insights Imaging. 2024-2-16

[9]
Value Creation Through Artificial Intelligence and Cardiovascular Imaging: A Scientific Statement From the American Heart Association.

Circulation. 2024-2-6

[10]
Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care.

Circ Cardiovasc Imaging. 2023-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索