Suppr超能文献

基于术前CT和MRI的多参数影像组学在预测直肠癌淋巴结转移中的比较

Comparison of preoperative CT- and MRI-based multiparametric radiomics in the prediction of lymph node metastasis in rectal cancer.

作者信息

Niu Yue, Yu Xiaoping, Wen Lu, Bi Feng, Jian Lian, Liu Siye, Yang Yanhui, Zhang Yi, Lu Qiang

机构信息

Department of Diagnostic Radiology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.

出版信息

Front Oncol. 2023 Nov 24;13:1230698. doi: 10.3389/fonc.2023.1230698. eCollection 2023.

Abstract

OBJECTIVE

To compare computed tomography (CT)- and magnetic resonance imaging (MRI)-based multiparametric radiomics models and validate a multi-modality, multiparametric clinical-radiomics nomogram for individual preoperative prediction of lymph node metastasis (LNM) in rectal cancer (RC) patients.

METHODS

234 rectal adenocarcinoma patients from our retrospective study cohort were randomly selected as the training (n = 164) and testing (n = 70) cohorts. The radiomics features of the primary tumor were extracted from the non-contrast enhanced computed tomography (NCE-CT), the enhanced computed tomography (CE-CT), the T2-weighted imaging (T2WI) and the gadolinium contrast-enhanced T1-weighted imaging (CE-TIWI) of each patient. Three kinds of models were constructed based on training cohort, including the Clinical model (based on the clinical features), the radiomics models (based on NCE-CT, CE-CT, T2WI, CE-T1WI, CT, MRI, CT combing with MRI) and the clinical-radiomics models (based on CT or MRI radiomics model combing with clinical data) and Clinical-IMG model (based on CT and MRI radiomics model combing with clinical data). The performances of the 11 models were evaluated via the area under the receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity in the training and validation cohort. Differences in the AUCs among the 11 models were compared using DeLong's test. Finally, the optimal model (Clinical-IMG model) was selected to create a radiomics nomogram. The performance of the nomogram to evaluate clinical efficacy was verified by ROC curves and decision curve analysis (DCA).

RESULTS

The MRI radiomics model in the validation cohort significantly outperformed than CT radiomics model (AUC, 0.785 vs. 0.721, <0.05). The Clinical-IMG nomogram had the highest prediction efficiency than all other predictive models (<0.05), of which the AUC was 0.947, the sensitivity was 0.870 and the specificity was 0.884.

CONCLUSION

MRI radiomics model performed better than both CT radiomics model and Clinical model in predicting LNM of RC. The clinical-radiomics nomogram that combines the radiomics features obtained from both CT and MRI along with preoperative clinical characteristics exhibits the best diagnostic performance.

摘要

目的

比较基于计算机断层扫描(CT)和磁共振成像(MRI)的多参数放射组学模型,并验证一种多模态、多参数的临床-放射组学列线图,用于直肠癌(RC)患者术前个体淋巴结转移(LNM)的预测。

方法

从我们的回顾性研究队列中随机选取234例直肠腺癌患者作为训练队列(n = 164)和测试队列(n = 70)。从每位患者的非增强计算机断层扫描(NCE-CT)、增强计算机断层扫描(CE-CT)、T2加权成像(T2WI)和钆对比增强T1加权成像(CE-T1WI)中提取原发肿瘤的放射组学特征。基于训练队列构建三种模型,包括临床模型(基于临床特征)、放射组学模型(基于NCE-CT、CE-CT、T2WI、CE-T1WI、CT、MRI、CT与MRI联合)和临床-放射组学模型(基于CT或MRI放射组学模型与临床数据联合)以及临床-影像组学模型(基于CT和MRI放射组学模型与临床数据联合)。通过训练队列和验证队列中受试者操作特征曲线(AUC)下面积、准确性、敏感性和特异性评估11种模型的性能。使用德龙检验比较11种模型AUC之间的差异。最后,选择最佳模型(临床-影像组学模型)创建放射组学列线图。通过ROC曲线和决策曲线分析(DCA)验证列线图评估临床疗效的性能。

结果

验证队列中的MRI放射组学模型显著优于CT放射组学模型(AUC,0.785对0.721,<0.05)。临床-影像组学列线图的预测效率高于所有其他预测模型(<0.05),其AUC为0.947,敏感性为0.870,特异性为0.884。

结论

MRI放射组学模型在预测RC的LNM方面比CT放射组学模型和临床模型表现更好。结合从CT和MRI获得的放射组学特征以及术前临床特征的临床-放射组学列线图具有最佳诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75e2/10708912/d9774d3737ca/fonc-13-1230698-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验