Suppr超能文献

利用紫外光谱数据集和化学计量学的简单分析方法对具有不同植物学和地理标志的印度尼西亚特色烘焙咖啡进行认证。

Simple analytical method using ultraviolet spectral dataset and chemometrics for the authentication of Indonesian specialty ground roasted coffee with different botanical and geographical indications.

作者信息

Suhandy Diding, Yulia Meinilwita, Munawar Agus Arip, Kusumiyati Kusumiyati

机构信息

Spectroscopy Research Group (SRG), Laboratory of Bioprocess and Postharvest Engineering, Department of Agricultural Engineering, Faculty of Agriculture, The University of Lampung, Jl. Prof. Dr. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia.

Department of Agricultural Technology, Lampung State Polytechnic, Jl. Soekarno Hatta No. 10, Rajabasa Bandar Lampung 35141, Indonesia.

出版信息

Data Brief. 2023 Nov 19;51:109820. doi: 10.1016/j.dib.2023.109820. eCollection 2023 Dec.

Abstract

The possible application of a simple analytical method based on a UV (ultraviolet) spectral dataset coupled with SIMCA (soft independent modeling of class analogy) for authentication of Indonesian specialty ground roasted coffee with different botanical and geographical indications (GIs) was demonstrated. Three types of Indonesian specialty ground roasted coffee were used: GIs arabica coffee from Gayo Aceh (96 samples), GIs liberica coffee from Meranti-Riau (119 samples), and GIs robusta coffee from Lampung (150 samples) with 1 g weight of each sample. All samples were extracted using hot distilled water and 3 mL aqueous filtered samples were pipetted into a 10 mm quartz cell. Original UV spectral datasets were recorded in the range of 190-399 nm. The pre-processed spectral dataset was generated using three simultaneous different preprocessing techniques: moving average smoothing with 11 segments, standard normal variate (SNV), and Savitzky-Golay (SG) first derivative with window size and polynomial order value of 11 and 2. The supervised classification based on the SIMCA method was applied for preprocessed selected spectral data (250-399 nm). The PCA data showed that GIs coffee with different botanical and geographical indications can be well separated. The SIMCA classification was accepted with 100 % of correct classification (100 % CC). This dataset demonstrated the potential use of UV spectroscopy with chemometrics to perform simple and affordable authentication of Indonesian specialty ground roasted coffee with different botanical and geographical indications (GIs).

摘要

本文展示了一种基于紫外(UV)光谱数据集并结合软独立类比建模(SIMCA)的简单分析方法在鉴别具有不同植物学和地理标志(GI)的印度尼西亚特色研磨烘焙咖啡方面的可能应用。使用了三种类型的印度尼西亚特色研磨烘焙咖啡:来自亚齐省加约的地理标志阿拉比卡咖啡(96个样品)、来自廖内省默拉蒂的地理标志利比里卡咖啡(119个样品)以及来自楠榜的地理标志罗布斯塔咖啡(150个样品),每个样品重量为1克。所有样品均用热蒸馏水萃取,将3毫升经过滤的水相样品移液至10毫米石英比色皿中。原始紫外光谱数据集在190 - 399纳米范围内记录。使用三种同时进行的不同预处理技术生成预处理光谱数据集:11段移动平均平滑、标准正态变量变换(SNV)以及窗口大小和多项式阶数分别为11和2的Savitzky - Golay(SG)一阶导数。基于SIMCA方法对预处理后的选定光谱数据(250 - 399纳米)进行监督分类分析。主成分分析(PCA)数据表明,具有不同植物学和地理标志的地理标志咖啡能够得到很好的分离。SIMCA分类的正确分类率为100%(100% CC)。该数据集证明了紫外光谱结合化学计量学在对具有不同植物学和地理标志的印度尼西亚特色研磨烘焙咖啡进行简单且经济实惠的鉴别方面的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e562/10701359/dae316e65bf6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验